

Dealing with the Deep Web and all its Quirks

(joint work with M. Bienvenu, D. Deutch, D. Martinenghi, and F. Suchanek)

PIERRE SENELLART

31 August 2012, VLDS

Definition (Deep Web, Hidden Web, Invisible Web)

All the content on the Web that is not directly accessible through hyperlinks. In particular: HTML forms, Web services.

Size estimate: 500 times more content than on the surface Web! [BrightPlanet, 2001]. Hundreds of thousands of deep Web databases [Chang et al., 2004]

Sources of the Deep Web

Example

- Yellow Pages and other directories;
- Library catalogs;
- Weather services;
- Real-estate agencies;
- etc.

... but also lots of information available on the surface Web, but that may be interesting to retrieve from the deep Web:

- more structured
- easier to retrieve the information of interest
- less network accesses to crawl the whole database

Pierre Senellart

A Quirky Deep Web

CNRS BGU PoliMi TPT MPII

4/30

- Numerous works on form understanding and information extraction from the deep Web [He et al., 2007, Varde et al., 2009, Khare et al., 2010]
- Formal models for answering queries under access pattern restrictions [Li and Chang, 2001, Calì and Martinenghi, 2008, Calì and Martinenghi, 2010, Benedikt et al., 2012a]
- Siphoning of hidden Web databases [Barbosa and Freire, 2004, Jin et al., 2011, Sheng et al., 2012]
- Those works ignore lots of quirky dimensions of deep Web interfaces

Here: towards a more comprehensive framework for deep Web modeling and querying

Introduction

Deep Web Quirks

Towards a Data Model and Query Language

Problems of Interest

Conclusions

6/30

Deep Web sources offer views over (most often relational) data, through, at the very least:

- selection (depending on user's query, or implicit in the service), in particular inequalities
- projection (not available attributes are exported by a given service)
- And also (but less critically):
 - joins (quite common in a Web application but from an outsider's perspective, often enough to see the result of a join as the relation of interest)
 - union, intersection, difference, etc. (relatively rare)
 - aggregation (usually not the most important part of the service)

more complex processing (rare in practice)

CNRS BGU PoliMi TPT MPII

Australian Yellow Pages search form:

三邊劉衍 Limited access patterns

Australian Yellow Pages search form:

Required attributes, dependencies between attributes of the form, etc.

7/30

IMDb advanced search sort criteria:

Sort by: MOVIEmeter▲ | A-Z | User Rating | Num Votes | US Box Office | Runtime | Year | US Release Date

Different possible sort criteria, some according to non-exported attributes

Paging in IMDb:

Display Options

Display:		Detailed	*	50 per page	-	sorted by
1	MOVIEmeter Ascending				*]

10,001-10,050 of 100,289 titles.

« Prev Next »

Each page of results requires a separate network access, and therefore has a cost

What you get when you try to access the 100,001-th result to an IMDb advanced query:

Error

Sorry, IMDb does not serve more than 100000 results for any query. (You asked for results starting from 100001)

Only a (top-ranked) subset of the results is available for each access

Twitter API rate limitation:

REST API Rate Limiting

The default rate limit for calls to the REST API varies depending on the authorization method being used and whether the method itself requires authentication.

- Unauthenticated calls are permitted 150 requests per hour. Unauthenticated calls are measured against the public facing IP of the server or device making the request.
- OAuth calls are permitted 350 requests per hour and are measured against the oauth_token used in the request.

Limited rate of queries per minute, hour, query... Several services of the same source may share the same limits.

Incomplete information: Projection

Several views of the same information on IMDB:

副 经 W Incomplete information: Projection

Several views of the same information on IMDB:

1. It's a Wonderful Life (1946)

aka "Frank Capra's It's a Wonderful Life" - USA (complete title) □ aka "La vie est belle" - Belgium (French title), Canada (French title), France aka "iQué bello es vivir!" - Peru (imdb display title), Spain aka "Ist das Leben nicht schön?" - Austria (TV title), West Germany (TV title) aka "iQue bello es vivir!" - Uruguay aka "A Felicidade Não Se Compra" - Brazil aka "Az élet csodaszép" - Hungary aka "Det er herligt at leve" - Denmark aka "Divan život" - Serbia aka "Divan zivot" - Yugoslavia (Croatian title) (imdb display title) aka "Do Céu Caiu Uma Estrela" - Portugal aka "Ihmeellinen on elämä" - Finland aka "La vita è meravigliosa" - Italv aka "Livet är underbart" - Sweden aka "Livet er vidunderlig" - Norway (imdb display title) aka "Mens, durf te leven" - Netherlands (informal literal title) aka "Mia vperohi zoi" - Greece (transliterated ISO-LATIN-1 title) aka "O viata minunata" - Romania (imdb display title) aka "Qué bello es vivir" - Argentina aka "Oue bonic és viure!" - Spain (Catalan title) aka "Que la vie est belle" - Belgium (French title) aka "Sahane havat" - Turkey (Turkish title) (DVD title) aka "Subarashiki kana, jinsei!" - Japan aka "To wspaniale zvcie" - Poland aka "Wat een mooi leven" - Belgium (Flemish title) aka "Zycie jest cudowne" - Poland

Incomplete information: Projection

Several views of the same information on IMDB:

Same relation(s), different attributes projected out

CNRS BGU PoliMi TPT MPI

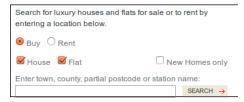
12/30

副盤郡間 Incomplete information: Granularity

Release date API on IMDb:

Release dates for It's a Wonderful Life (<u>1946</u>) More at IMDbPro »

 Country
 Date


 USA
 20 December 1946 (New York City, New York)

The granularity of the presented information may not be the most precise one

Savills property search:

Publication time is a special attribute of interest:

- may or may not be exported
- may or may not be queriable (sometimes in a very weird way!)
- often used as a ranking criterion
- granularity plays an important role
- publication date < query date</p>

Pierre Senella

Amazon Books sorting options:

Proprietary ranking functions

- Weighted combination of attributes with unknown weights [Soliman et al., 2011]
- Ranking according to an <u>unexported attribute</u>

Pierre Senellart

Dependencies across services

Some of IMDb advanced search options:

Advanced Title Search

Want to get a list of comedies from the 1970s that have at least 1000 votes and an average rating of 7.5 or higher? Use <u>Advanced Title Search</u>.

Advanced Name Search

Want a list of males in the database who are Virgos and over 6 feet tall? Use <u>Advanced</u> <u>Name Search</u>.

Collaborations and Overlaps

Want a list of titles in which both Brad Pitt and George Clooney appeared? Or a list of people who worked on both Forrest Gump and Apollo 13? Try searching <u>Collaborations and</u> <u>Overlaps</u>.

- services of the same source provide different correlated views of the same data
- dependencies (inclusion) across services are common too
- a given service often satisfies some key dependencies

Pierre Senellart

- non-conjunctive forms (common in digital library applications)
- unknown characteristics of information retrieval systems (keyword querying vs exact querying, indexing of stop words, stemming used, etc.)
- intricate interactions (AJAX autocompletion, submitting a form as a first step before submitting another form, etc.)
- potential side effects of a service

Introduction

Deep Web Quirks

Towards a Data Model and Query Language Desiderata

Example Syntax

Problems of Interest

Conclusions

Introduction

Deep Web Quirks

Towards a Data Model and Query Language Desiderata

Example Syntax

Problems of Interest

Conclusions

Features of the query language

What does a user need out of a deep Web query language?

- Selection, projection, joins, union (of different sources)
- Custom ranking
- **Top-**k results of a query

But also:

- Proper uncertainty management
- Deduplication of query results
- Diversification of query results
- **Explanation** of query results

Declarative framework (specifying what a user wants, not how to retrieve it)

Composability: Web services, queries, materialized views expressible in a common language

Incremental maintenance support

Familiarity with the query language (e.g., relying on SQL when possible)

Cost model for accessing a deep Web source, paging, utilizing a materialized view, etc.

Introduction

Deep Web Quirks

Towards a Data Model and Query Language Desiderata Example Syntax

Problems of Interest

Conclusions

Example service: Hotel availability

```
CREATE VIEW HotelsService1($c,$o) AS
SELECT name, city, price, AvailableRooms,
rating, DAY(LastUpdate)
FROM Hotels1
WHERE city=$c
ORDER BY rating DESC
LIMIT $o,10 UP TO 1000
```

- Parametrized view over a (hidden) source relation
- Main idea: Reproduce a (possible) SQL implementation of the view
- Showcased: selection, projection, access patterns, granularity, ranking, paging, overflow


```
CREATE VIEW MapService($locX,$locY,$radius, $o) AS
SELECT name, HotelLocX,HotelLocY,
square(HotelLocX-$locX) + square(HotelLocY-$locY) As D
FROM GeoDB
WHERE D < square($radius)
ORDER BY SqrDist ASC
LIMIT $0,10</pre>
```



```
SELECT Hotels1.name, Hotels2.name
FROM (HotelsService1+HotelsService2+MapService) As H1,
        (HoteslService1+HotelsService2+MapService) As H2
WHERE H1.city= 'Istanbul' AND H2.city='Istanbul'
AND H1.rating > 4
AND H2.rating > 4
AND square(H1.HotelLocX-H2.HotelLocX) +
        square(H1.HotelLocY-H2.HotelLocY) < 1000</pre>
```

The "+" operator combines services using any combination of accesses (in particular, union, natural join)

Introduction

Deep Web Quirks

Towards a Data Model and Query Language

Problems of Interest

Conclusions

一邊都的 Problems of Interest

Algorithms for, and complexity of, the following problems:

- Given a collection of services, is a query realizable? Combines problems from answering queries using views [Halevy, 2001], limited access patterns [Calì and Martinenghi, 2010], feasability of a ranking function, taking into account overflow...
- What is the optimal plan for realizing a query?
 Static plans: requires a proper query plan (recursive) formalism, and a static cost model
 Demension plane, martial execution and manufacture of the cost

Dynamic plans: partial execution and reevaluation of the cost – what is the best access I can do at a given time [Benedikt et al., 2011]

Introduction

Deep Web Quirks

Towards a Data Model and Query Language

Problems of Interest

Conclusions

Mail Inference of the model from real services

How to automatically infer such a model from real-world forms?

- **Heuristics** to detect paging, overflow, etc.
- Combine classical form understanding and information extraction systems to understand the properties of a service: making assumptions, and then probing to confirm these assumptions [Oita et al., 2012]
- Software testing methods to test a wide range of possible combinations of attributes and infer the corresponding behavior of the interface
- Perform static analysis on client-side code to detect all such characteristics enforced on the client side [Benedikt et al., 2012b]
- Make use of the different services of the same source to holistically learn their characteristics

Pierre Senellart

Summary and perspectives

- Many quirky aspects often ignored but crucial in deep Web services
- A proper query answering system requires consider them together, not in isolation
- Towards a composable, declarative, model for deep Web querying together with a cost model

Summary and perspectives

- Many quirky aspects often ignored but crucial in deep Web services
- A proper query answering system requires consider them together, not in isolation
- Towards a composable, declarative, model for deep Web querying together with a cost model

- Full design of the data and query model
- Characterization of the complexity of the considered problems
- Query planning algorithms

Pierre Senellart

Luciano Barbosa and Juliana Freire. Siphoning hidden-Web data through keyword-based interfaces. In *Proc. Simpósio Brasileiro de Bancos de Dados*, Brasília, Brasil, October 2004.

Michael Benedikt, Georg Gottlob, and Pierre Senellart. Determining relevance of accesses at runtime. In *PODS*, 2011.

Michael Benedikt, Pierre Bourhis, and Clemens Ley. Querying schemas with access restrictions. *PVLDB*, 5(7), 2012a.

Michael Benedikt, Tim Furche, Andreas Savvides, and Pierre Senellart. ProFoUnd: Program-analysis-based form understanding. In *WWW*, 2012b. Demonstration.

BrightPlanet. The deep Web: Surfacing hidden value. White Paper, July 2001.

(ロ) (部) (注) (注) (注) (1000)

- Andrea Calì and Davide Martinenghi. Querying Data under Access Limitations. In *ICDE*, 2008.
- Andrea Calì and Davide Martinenghi. Querying the deep web. In *EDBT*, 2010. Tutorial.
- Kevin Chen-Chuan Chang, Bin He, Chengkai Li, Mitesh Patel, and Zhen Zhang. Structured databases on the Web: Observations and implications. *SIGMOD Record*, 33(3):61-70, September 2004.
- Alon Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4), 2001.
- Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. Accessing the deep Web: A survey. *Communications of the ACM*, 50(2):94-101, 2007.

- Xin Jin, Nan Zhang, and Gautam Das. Attribute domain discovery for hidden Web databases. In *SIGMOD*, 2011.
- Ritu Khare, Yuan An, and Il-Yeol Song. Understanding deep Web search interfaces: a survey. *SIGMOD Record*, 39(1), 2010.
- Chen Li and Edward Chang. Answering queries with useful bindings. ACM TODS, 26(3), 2001.
- Marilena Oita, Antoine Amarilli, and Pierre Senellart. Cross-fertilizing deep Web analysis and ontology enrichment. In *VLDS*, 2012.
- Cheng Sheng, Nan Zhang, Yufei Tao, and Xin Jin. Optimal algorithms for crawling a hidden database in the Web. *PVLDB*, 5(11), 2012.

- Mohamed A. Soliman, Ihab F. Ilyas, Davide Martinenghi, and Marco Tagliasacchi. Ranking with uncertain scoring functions: semantics and sensitivity measures. In *SIGMOD*, 2011.
- Aparna Varde, Fabian M. Suchanek, Richi Nayak, and Pierre Senellart.
 Knowledge discovery over the deep Web, semantic Web and XML.
 In Proc. DASFAA, pages 784-788, Brisbane, Australia, April 2009.
 Tutorial.

(ロ) (部) (注) (注) (注) (1000)