Designing and testing an ALU for multiprecision arithmetic

Dorian Lesbre September 10th, 2021

Outline

- 1. Introduction
- 2. Hardware design tools

- 3. The ALU
- 4. Compiling to Verilog

Introduction

The Cephalopod processor

Designed to limit main sources of error in IoT :

- Garbage collection errors
- Integer overflow

ALU Goals

- Avoid overflow by using multiprecision integers
- Be efficient on single chunk integers

The ALU

Integer representation

- linked list in RAM
- signed by topmost chunk
- remove leading sign chunks

The ALU

ALU components

- Logical unit (&&, ||, ¬, if-then-else)
- Comparator unit (==, ! =, >, >=)
- Arithmetic unit (+, -, ×, /, %, $\sqrt{}$)
- Cleaning unit

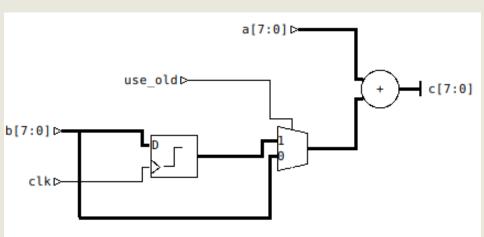
Hardware design tools

Voss II : hardware description in HFL

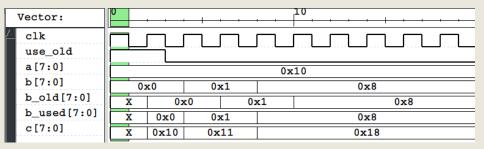
```
TYPE "my_int" 8;
```

```
let example =
  bit_input clk use_old.
  my int input a b.
  my_int_output c.
  my_int_internal b_old b_used.
  CELL "example" [
    re_ff clk b b_old,
    b_used <- (IF use_old THEN b_old ELSE b),</pre>
    c <- a '+' b_used
  ];
```

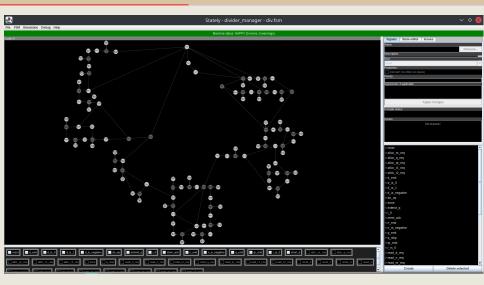
Voss II : circuit visualization



Voss II : circuit simulation



Stately : an FSM editor



Bifrost : a higher level language

```
read d:
  node_d = do mem_read(addr_d_cur);
  t_d_end = node_d.laddr == ADDR_END;
  short d = t d end & addr d cur == addr d;
  d_is_negative = t_d_end & get_bit(node_d.int, TOP_BIT POS);
 if (node d.int == 0 & short d) {
   goto zero_division;
  addr_r1_cur = do mem_alloc();
  if (node_d.int != 1 & short_d) {
    node_d.int = if d_is_negative then (~node_d.int+1) else node_d.int;
    addr r1 = addr r1 cur;
    goto read_n;
```

The ALU

The multiplier

- primary school multiplication
- uses a single cummulative sum
- Sign extend topmost bits

Unsigned division

Definition

For two integers $N, D \in \mathbb{N}^2$ with $D \neq 0$, find $Q, R \in \mathbb{N}^2$ such that :

$$\begin{cases} N = QD + R \\ 0 \leqslant R < D \end{cases}$$

Long division

7 4	6		
-6	12		
14			
-12			
2			

Algorithm : While $N \ge Q$

- 1. Find a such that $10^a D \leqslant N < 10^{a+1} D$
- 2. Find the largest $b \in \llbracket 1, 9 \rrbracket$ such that $10^a b D \leqslant N$
- 3. Set b as the a-th digit of Q
- 4. subtract $10^{a}bD$ from N
- 5. repeat

Binary long division

1 010	11
-0	0011
10 10	
-0	
1010	
-11	
100	
-11	
1	

Algorithm :			
Set $Q = 0$ and $R = 0$.			
For every bit i in N descending			
1. set $R = R \ll 1 + N[i]$			
2. if $R > D$			
set $R = R - D$			
set $Q[i] = 1$			

Mutliprecision long division

- Descending through N and Q easy if big-endian.
- Naive implementation leads to :
 - 3-5 reads and 1-2 writes every iteration
 - One extra chunk used for *R* as *R* can be greater then *D*.
- Can be slightly speed up by combining operations :
 - 3 reads and 2 writes every iteration (-2 chunks)
 - Needs to store 2 copies of R

Mutliprecision long division

R_1	010 001	111	(143)
D	011 101	011	(235)
$R_1 \ll 1 + 0$		110	$(c_1 = 1)$
$R_1 \ll 1 + 0 - D$		011	$(c_2 = 0)$
$R_1 \ll 1 + 0$	011		$(c_1 = 0)$
$R_1 \ll 1 + 0 - D$	110		$(c_2 = 1)$
$R_1 \ll 1 + 0$	100		$(c_1 = 0)$
$R_1 \ll 1 + 0 - D$	000		$(c_2 = 0)$
R'_1	100 011	110	(286)
R'_2	000 110	100	(52)

Algorithm : for every bit *i* of *N* descending

1. set
$$c_1 = N[i]$$
 and $c_2 = 0$

2. for every chunk j of D, R_1 and R_2

2.1 set
$$T = R_1[j] \ll 1 + c_1$$

2.2 write $T[2:0]$ in $R_1[j]$
2.3 set c_1 to $T[3]$
2.4 write $(T - D[j])[2:0]$ in $R_2[j]$
2.5 set c_2 to $(T - D)[3]$

3. if c_1 or not c_2 swap R_1 and R_2

Signed division

- Flip the sign of N or D to be positive
- Some extra operations needed on R and Q

HFL allows symbolic evaluation of circuits :

- Can test on fixed number of chunks with variables as integer
- Can add constraints to variables
- Tested up to 2-3 chunks of 6 bits.

Compiling to Verilog

Compiling to Verilog

Goal

Convert HFL's circuit representation (pexlif) to standard verilog

- Mostly straigtforward
- Recognize flip-flop to avoid phase delays
- Some fiddling with slices
- Some inlining to simplify generated code

Thank you for your attention !