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Introduction



Contextual refinement

� Binary relation between two open programs

� Any observable behavior from p is also observable in p′

General definition

p ≼c p
′ := ∀C ,C [p] terminates ⇒ C [p′] terminates
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Applications of contextual refinement

� Reasoning on open programs using the concrete semantics

� Specify a program in terms of another

� Express representation independence

� Reasoning algebraically about program constructs

BUT: often hard to prove
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Example: specification as a program

Formal specification:

∀P , I , f , xs, ℓ,{
isList ℓ xs ∗ all P xs ∗ I [] a ∗
(∀x , x , a′, ys, {P x ∗ I ys a′} f x a′ {r . I (x :: ys) r})

}
foo f a ℓ

{r . isList ℓ xs ∗ I xs r}

Specification as a program:

let rec foo_spec f a l = match l with

| [] -> a

| x::xs -> f x (foo_spec f a xs)
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Example: representation independence

let counter () =

let x = ref 0 in

let incr () =

x := !x + 1

in

let read () = !x

in incr, read

let counter_neg () =

let x = ref 0 in

let incr () =

x := !x - 1

in

let read () = - !x

in incr, read
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Capability machines



What is a capability machine

� Security oriented CPU

� Check memory access via special machine words:

Word = Z ⊔ Cap

Capability

c ∈ Cap := (p, b, e, a)

where p ∈ {O, E, R, RW, RX, RWX}

⇒ gives access to [b; e) with permission p

6



What is a capability machine

� Security oriented CPU

� Check memory access via special machine words:

Word = Z ⊔ Cap

Capability

c ∈ Cap := (p, b, e, a)

where p ∈ {O, E, R, RW, RX, RWX}

⇒ gives access to [b; e) with permission p

6



Memory access via capabilities

Registers:

Memory:

pc r1 r2 · · · rn

RX 42 RW · · · 0

· · · code · · · data 1 R · · · data 2 · · ·
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Permission order

O

E
R

RXRW

RWX
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Memory access via capabilities

Very few instructions modify capabilities :

� lea r z changes a capability’s address to a + z

� subseg r b′ e ′ modifies the range to [b′; e ′) ⊆ [b; e)

� restrict r p′ modifies the permission to p′ ≼ p

� jmp r and jnz r ρ change E to RX.
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Cerise capability machine model

Simple model:

� Single core

� No interruptions

� No privilege levels

� No virtual memory

� Limited instruction set

But captures:

� Finite memory

� Fixed set of registers

� Instructions encoded as

integers
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Cerise instruction set

ρ ∈ Z ⊔ RegName

i ∈ Instr := fail | halt | jmp r | jnz r r |
move r ρ | load r r | store r ρ |
add r ρ ρ | sub r ρ ρ | lt r ρ ρ |
restrict r ρ | subseg r ρ ρ | lea r ρ | isptr r r |
getp r r | getb r r | gete r r | geta r r
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Machine state

(mem, regs) ∈ ExecConf := (Addr → Word)× (RegName → Word)

δ ∈ ExecMode := Halted | Failed | Running

Machine state: ExecMode× ExecConf
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Small step semantics

ExecStep

(Running, (mem, regs)) →
execInstr mem regs i if regs(pc) = (p, b, e, a) ∧

RX ≼ p ∧ a ∈ [b; e) ∧
decodeInstr(mem(a)) = Some i

Failed, (mem, regs) otherwise
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Components and contexts



Defining open and closed program

What is a program?

� A region of memory containing encoded instructions

� A register state RegName → Word

An open program?

A closed program?

A context?
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Defining open programs: components

Open program:

� segment of memory

� interface to access it

Component

component :=


segment : Addr ⇀ Word

imports : Addr ⇀ Symbols

exports : Symbols ⇀ Word
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Well-formed components

� imports and exports symbols are disjoint:

img (imports) ∩ dom (exports) = ∅

� import addresses are part of the component’s memory:

dom (imports) ⊆ dom (segment)

� contained capabilities only point to its memory:

∀ ( , b, e, ) ∈ img segment ∪ img exports,

[b; e) ⊆ dom segment
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Closed program

Program

A program is a pair (p, regs) :

� p is a well-formed component with no imports

� regs ∈ RegName → Word is a register state

� capabilities in regs point to p
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Linking

x : s1 s2

exports = {s3 7→ w3, s4 7→ w4}

y : s3

exports = {s1 7→ w1}

x ▷◁ y : w1 s2 w3

exports = {s3 7→ w3, s4 7→ w4, s1 7→ w1}
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Linking

Requires components to be disjoint and well-formed:

x ▷◁ y :=

exports := x .exports ⊎ y .exports

imports :=

{
a 7→ s

∣∣∣∣∣ a 7→ s ∈ x .imports ⊎ y .imports ∧
s 7→ /∈ x .exports ⊎ y .exports

}
segment := x .segment[y .exports ◦ x .imports] ⊎

y .segment[x .exports ◦ y .imports]
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Properties of linking

� x #ℓ y ⇒ x ▷◁ y well-formed

� commutative: x #ℓ y ⇒ x ▷◁ y = y ▷◁ x

� associative:

x #ℓ y ∧ y #ℓ z ∧ x #ℓ z ⇒ x ▷◁ (y ▷◁ z) = (x ▷◁ y) ▷◁ z

20



Context

”Just what is needed” to turn a component into a program.

Context

A context for a component x is a pair (z , regs) where:

� x #ℓ z

� img x .imports ⊆ dom z .exports

� img z .imports ⊆ dom x .exports

� capabilities in regs point to z
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Properties of context

� (z , regs) is a context of x ⇒ (z ▷◁ x , regs) is a program

� (z , regs) is a context of x ▷◁ y ⇔
(z ▷◁ x , regs) is a context of y and

capabilities in regs point to z

� if y .exports = ∅ and (z , regs) is a context of x ▷◁ y then

(z , regs) is a context of y
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Defining contextual refinement



Contextual refinement

General idea: x ≼ctx y when:

� for all context (z , regs)

� for all values v ∈ {Halted, Failed}

if ∃n, machine run n (z ▷◁ x) regs = v

then ∃n, machine run n (z ▷◁ y) regs = v
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What quantification on context?

Multiple options:

1. quantify on context of both x and y

� allows x and y to be VERY different

� weak refinement, no transitivity

2. require that all contexts of x be contexts of y
� unpleasant side conditions (y ⊆ x)

� stronger refinement

3. define a type system on components
� complex type system

� strongest refinement, implies point 2
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Contextual refinement

Improved definition: x ≼ctx y when:

� for all (z , regs)

� for all values v ∈ {Halted, Failed}

{
(z , regs) is a context of x

∃n, machine run n (z ▷◁ x) regs = v
⇒

{
(z , regs) is a context of y

∃n, machine run n (z ▷◁ y) regs = v
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A few problems remain

Empty quantification: because of finite memory

⇒ require that x leave some space free

⇒ helps with proofs as well

Components can be too different:

⇒ require that dom y .exports ⊆ dom x .exports

26
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Final definition

� dom x .segment ∩ [0; ctxt size) = ∅
� dom y .exports ⊆ dom x .exports

� for all (z , regs), for all v ∈ {Halted, Failed}

{
(z , regs) is a context of x

∃n, machine run n (z ▷◁ x) regs = v
⇒

{
(z , regs) is a context of y

∃n, machine run n (z ▷◁ y) regs = v
27



Good properties of contextual refinement

non-trivial: ∃ x y , x ̸= y ∧ x ≼ctx y

reflexive: x well-formed ⇒ x ≼ctx x

transitive: x ≼ctx y ∧ y ≼ctx z ⇒ x ≼ctx z

compositional: if x and y disjoint

x ≼ctx x ′ ∧ y ≼ctx y ′ ⇒ (x ▷◁ y) ≼ctx (x ′ ▷◁ y ′)
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Other properties of contextual refinement

Other consequences: if x ≼ctx y then

� All public memory of x and y is the same

� Depends on absolute memory position

� Non-terminating programs refine pretty-much anything

� E capabilities behave in the same way

� dom(segment y) ⊆ dom(segment x)

29
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Growing and shrinking components

if z has no exports then:

� if x ≼ctx y then x ▷◁ z ≼ctx y

� if x ≼ctx y ▷◁ z then x ≼ctx y

30



Validity relation



Unary validity relation

Goal: capture values safe to share with unknown code

V(z) := True

V(O, b, e, a) := True

V(E, b, e, a) := ▷□ E(RX, b, e, a)

V(R/RX, b, e, a) := ∗
a∈[b;e)

∃P ,

{
∃w , a 7→a w ∗ P(w) ∗
▷□ ∀w , P(w) −∗ V(w)

V(RW/RWX, b, e, a) := ∗
a∈[b;e)

∃w , a 7→a w ∗ V(w)

Recursive definition possible thanks to Iris’ later modality (▷)
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Unary expression relation

Goal: capture values safe to execute with unknown code

E(w) := ∀ regs ∈ RegName → Addr, regsℓ(pc) = w ⇒( ∗
r∈RegName

r 7→r regs(r) ∗ V(regs(r))

)
−∗

WP Running {v , v = Halted}

32



Binary validity relation

Defined on equal values:

V (z , z) := True

V ((O, b, e, a), ) := True

V ((E, b, e, a), ) := ▷□ E ((RX, b, e, a), (RX, b, e, a))

V ((R/RX, b, e, a), ) := ∗
a∈[b;e)

∃P ,

{
∃w w ′, a 7→a w ∗ a ↣a w

′ ∗P(w ,w ′) ∗
▷□ ∀w w ′, P(w ,w ′) −∗ V (w , w ′)

V ((RW/RWX, b, e, a), ) := ∗
a∈[b;e)

∃w w ′, a 7→a w ∗ a ↣a w
′ ∗ V (w , w ′)

33



Binary expression relation

E (wℓ, wr ) := ∀ regsℓ, regsr , regsℓ(pc) = wℓ ∧ regsr (pc) = wr ⇒( ∗
r∈RegName

r 7→r regsℓ(r) ∗ r ↣r regsr (r) ∗ V (regsℓ(r), regsr (r))

)
−∗

WP (Running, Running) {(vℓ, vr ), vℓ = Halted ⇒ vr = Halted}

⇒ similar implication to the one in contextual refinement
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Fundamental theorem on logical relations

If a capability is safe to share, it is safe to execute

FTLR

spec ctx ⇒
V ((p, b, e, a), (p, b, e, a)) ⇒
E ((p, b, e, a), (p, b, e, a))

35
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Exports relation

Goal: link validity (words) to CR (components)

Exports relation

Vexp (x , y) := ∗
s 7→ wr ∈ y .exports

∃wℓ, s 7→ wℓ ∈ x .exports ∗ V (wℓ, wr)

Implies dom y .exports ⊆ dom x .exports
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Compatibility with link

Let x , y , z be components such that:

� x and z are disjoint; y and z are disjoint;

� img (z .segment) ⊆ Z;
� dom x .exports ⊆ dom y .exports;

Then:

spec ctx ∗ Vexp (x , y) ∗mem mapℓ(x , z) ∗mem mapr(y , z)

⇛ Vexp (x ▷◁ z , y ▷◁ z)
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Conclusion



Conclusion

Remaining work:

� Show link between Vexp and CR

� Strenghten theorem on Vexp of links

Reflexions on CR:

� Too strong relation for many practical cases

� Maybe try to restrict observable behaviors
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Thank you for your attention

Questions?

39
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