Defining contextual refinement for capability machines

Dorian Lesbre

March 13th, 2023
Logic and Semantics Seminar

Outline

1. Introduction
2. Capability machines
3. Components and contexts
4. Defining contextual refinement
5. Validity relation
6. Conclusion

Introduction

Contextual refinement

- Binary relation between two open programs
- Any observable behavior from p is also observable in p^{\prime}

Contextual refinement

- Binary relation between two open programs
- Any observable behavior from p is also observable in p^{\prime}

General definition

$$
p \preccurlyeq{ }_{c} p^{\prime}:=\forall C, C[p] \text { terminates } \Rightarrow C\left[p^{\prime}\right] \text { terminates }
$$

Applications of contextual refinement

- Reasoning on open programs using the concrete semantics

Applications of contextual refinement

- Reasoning on open programs using the concrete semantics
- Specify a program in terms of another

Applications of contextual refinement

- Reasoning on open programs using the concrete semantics
- Specify a program in terms of another
- Express representation independence

Applications of contextual refinement

- Reasoning on open programs using the concrete semantics
- Specify a program in terms of another
- Express representation independence
- Reasoning algebraically about program constructs

Applications of contextual refinement

- Reasoning on open programs using the concrete semantics
- Specify a program in terms of another
- Express representation independence
- Reasoning algebraically about program constructs

BUT: often hard to prove

Example: specification as a program

Formal specification:

$$
\begin{aligned}
& \forall P, I, f, x s, \ell, \\
& \left\{\begin{array}{l}
\text { isList } \ell x s * \text { all } P x s * I[] a * \\
\left(\forall x, x, a^{\prime}, y s,\left\{P x * I y s a^{\prime}\right\} f x a^{\prime}\{r . I(x:: y s) r\}\right)
\end{array}\right\} \\
& \text { foo } f a \ell \\
& \\
& \{r \text {. isList } \ell x s * I x s r\}
\end{aligned}
$$

Example: specification as a program

Formal specification:

$$
\begin{aligned}
& \forall P, I, f, x s, \ell, \\
& \left\{\begin{array}{l}
\text { isList } \ell x s * \text { all } P x s * I[] a * \\
\left(\forall x, x, a^{\prime}, y s,\left\{P x * I y s a^{\prime}\right\} f x a^{\prime}\{r . I(x:: y s) r\}\right)
\end{array}\right\} \\
& \text { foo } f a \ell \\
& \\
& \{r \text {. isList } \ell x * I x s r\}
\end{aligned}
$$

Specification as a program:
let rec foo_spec f a l = match l with
| [] -> a
| x::xs -> f x (foo_spec faxs)

Example: representation independence

$$
\begin{aligned}
& \text { let counter }()= \\
& \text { let } x=\text { ref } 0 \text { in } \\
& \text { let incr }()= \\
& x:=!x+1
\end{aligned}
$$

 in
 let read () = !x
 in incr, read
 $$
\begin{aligned}
& \text { let counter_neg }()= \\
& \text { let } x=\text { ref } 0 \text { in } \\
& \text { let incr }()= \\
& x:=!x-1 \\
& \text { in } \\
& \text { let read }()=- \text { ! } \\
& \text { in incr, read }
\end{aligned}
$$

Capability machines

What is a capability machine

- Security oriented CPU
- Check memory access via special machine words:

$$
\text { Word }=\mathbb{Z} \sqcup \text { Cap }
$$

What is a capability machine

- Security oriented CPU
- Check memory access via special machine words:

$$
\text { Word }=\mathbb{Z} \sqcup \text { Cap }
$$

Capability

$$
c \in \operatorname{Cap}:=(p, b, e, a)
$$

where $p \in\{0, E, R, R W, R X, R W X\}$
\Rightarrow gives access to $[b ; e)$ with permission p

Memory access via capabilities

Permission order

Memory access via capabilities

Very few instructions modify capabilities :

- lea $r z$ changes a capability's address to $a+z$

Memory access via capabilities

Very few instructions modify capabilities :

- lea $r z$ changes a capability's address to $a+z$
- subseg $r b^{\prime} e^{\prime}$ modifies the range to $\left[b^{\prime} ; e^{\prime}\right) \subseteq[b ; e)$

Memory access via capabilities

Very few instructions modify capabilities :

- lea $r z$ changes a capability's address to $a+z$
- subseg $r b^{\prime} e^{\prime}$ modifies the range to $\left[b^{\prime} ; e^{\prime}\right) \subseteq[b ; e)$
- restrict $r p^{\prime}$ modifies the permission to $p^{\prime} \preccurlyeq p$

Memory access via capabilities

Very few instructions modify capabilities :

- lea $r z$ changes a capability's address to $a+z$
- subseg $r b^{\prime} e^{\prime}$ modifies the range to $\left[b^{\prime} ; e^{\prime}\right) \subseteq[b ; e)$
- restrict $r p^{\prime}$ modifies the permission to $p^{\prime} \preccurlyeq p$
- jmp r and jnz r ρ change E to RX.

Cerise capability machine model

Simple model:

- Single core
- No interruptions
- No privilege levels
- No virtual memory
- Limited instruction set

Cerise capability machine model

Simple model:

- Single core
- No interruptions
- No privilege levels
- No virtual memory
- Limited instruction set

But captures:

- Finite memory
- Fixed set of registers
- Instructions encoded as integers

Cerise instruction set

$\rho \in \mathbb{Z} \sqcup$ RegName

$$
\begin{aligned}
i \in \text { Instr }:= & \text { fail } \mid \text { halt } \mid \text { jmp } r \mid \text { jnz } r r \mid \\
& \text { move } r \rho \mid \text { load } r r \mid \text { store } r \rho \mid \\
& \text { add } r \rho \rho \mid \text { sub } r \rho \rho \mid \text { lt } r \rho \rho \mid
\end{aligned}
$$

$$
\text { restrict } r \rho \mid \text { subseg } r \rho \rho \mid \text { lea } r \rho \mid \text { isptr } r r \mid
$$ getp r r| getb r r| gete r r| geta r r

Machine state

$$
\begin{aligned}
(\text { mem, regs }) \in \text { ExecConf } & :=\text { (Addr } \rightarrow \text { Word }) \times(\text { RegName } \rightarrow \text { Word }) \\
\delta \in \text { ExecMode } & :=\text { Halted } \mid \text { Failed } \mid \text { Running }
\end{aligned}
$$

Machine state: ExecMode \times ExecConf

Small step semantics

ExECSTEP

(Running, (mem, regs)) \rightarrow
 (execInstr mem regs i if regs $(\mathrm{pc})=(p, b, e, a) \wedge$ $R X \preccurlyeq p \wedge a \in[b ; e) \wedge$ decodeInstr $(\operatorname{mem}(a))=$ Some i
 Failed, (mem, regs) otherwise

Components and contexts

Defining open and closed program

What is a program?

Defining open and closed program

What is a program?

- A region of memory containing encoded instructions
- A register state RegName \rightarrow Word

Defining open and closed program

What is a program?

- A region of memory containing encoded instructions
- A register state RegName \rightarrow Word

An open program?
A closed program?
A context?

Defining open programs: components

Open program:

- segment of memory
- interface to access it

Defining open programs: components

Open program:

- segment of memory
- interface to access it

Component

$$
\text { component }:=\left\{\begin{array}{ll}
\text { segment }: \text { Addr } \rightharpoonup \text { Word } \\
\text { imports }: \text { Addr } \rightharpoonup \text { Symbols } \\
\text { exports }: \text { Symbols } \rightharpoonup \text { Word }
\end{array}\right\}
$$

Well-formed components

- imports and exports symbols are disjoint:
img (imports) \cap dom (exports) $=\emptyset$

Well-formed components

- imports and exports symbols are disjoint:
img (imports) \cap dom (exports) $=\emptyset$
- import addresses are part of the component's memory: dom (imports) \subseteq dom (segment)

Well-formed components

- imports and exports symbols are disjoint:
img (imports) \cap dom (exports) $=\emptyset$
- import addresses are part of the component's memory: dom (imports) \subseteq dom (segment)
- contained capabilities only point to its memory:

$$
\begin{aligned}
& \forall(-, b, e,-) \in \text { img segment } \cup \text { img exports }, \\
& {[b ; e) \subseteq \text { dom segment }}
\end{aligned}
$$

Closed program

Program

A program is a pair (p, regs) :

- p is a well-formed component with no imports
- regs \in RegName \rightarrow Word is a register state
- capabilities in regs point to p

Linking

y :

Linking

Linking

Requires components to be disjoint and well-formed:

$$
x \bowtie y:=
$$

Properties of linking

- $x \#_{\ell} y \Rightarrow x \bowtie y$ well-formed
- commutative: $x \#_{\ell} y \Rightarrow x \bowtie y=y \bowtie x$
- associative:
$x \#_{\ell} y \wedge y \#_{\ell} z \wedge x \#_{\ell} z \Rightarrow x \bowtie(y \bowtie z)=(x \bowtie y) \bowtie z$

Context

"Just what is needed" to turn a component into a program.

Context

"Just what is needed" to turn a component into a program.

Context

A context for a component x is a pair (z, regs) where:

- $x \#_{\ell} z$
- img x.imports \subseteq dom z.exports
- img z.imports \subseteq dom x.exports
- capabilities in regs point to z

Properties of context

- $(z$, regs $)$ is a context of $x \Rightarrow(z \bowtie x$, regs $)$ is a program

Properties of context

- $(z$, regs $)$ is a context of $x \Rightarrow(z \bowtie x$, regs $)$ is a program
- (z, regs) is a context of $x \bowtie y \Leftrightarrow$
($z \bowtie x$, regs) is a context of y and capabilities in regs point to z

Properties of context

- $(z$, regs $)$ is a context of $x \Rightarrow(z \bowtie x$, regs $)$ is a program
- $(z$, regs $)$ is a context of $x \bowtie y \Leftrightarrow$
($z \bowtie x$, regs) is a context of y and
capabilities in regs point to z
- if y.exports $=\emptyset$ and (z, regs) is a context of $x \bowtie y$ then
$(z$, regs $)$ is a context of y

Defining contextual refinement

Contextual refinement

General idea: $x \preccurlyeq \operatorname{ctx} y$ when:

- for all context (z, regs)
- for all values $v \in\{$ Halted, Failed $\}$
if $\exists n$, machine_run $n(z \bowtie x)$ regs $=v$ then $\exists n$, machine_run $n(z \bowtie y)$ regs $=v$

Contextual refinement

General idea: $x \preccurlyeq \operatorname{ctx} y$ when:

- for all context (z, regs)
- for all values $v \in\{$ Halted, Failed $\}$
if $\exists n$, machine_run $n(z \bowtie x)$ regs $=v$ then $\exists n$, machine_run $n(z \bowtie y)$ regs $=v$

What quantification on context?

Multiple options:

1. quantify on context of both x and y

What quantification on context?

Multiple options:

1. quantify on context of both x and y

- allows x and y to be VERY different
- weak refinement, no transitivity

What quantification on context?

Multiple options:

1. quantify on context of both x and y

- allows x and y to be VERY different
- weak refinement, no transitivity

2. require that all contexts of x be contexts of y

What quantification on context?

Multiple options:

1. quantify on context of both x and y

- allows x and y to be VERY different
- weak refinement, no transitivity

2. require that all contexts of x be contexts of y

- unpleasant side conditions $(y \subseteq x)$
- stronger refinement

What quantification on context?

Multiple options:

1. quantify on context of both x and y

- allows x and y to be VERY different
- weak refinement, no transitivity

2. require that all contexts of x be contexts of y

- unpleasant side conditions $(y \subseteq x)$
- stronger refinement

3. define a type system on components

What quantification on context?

Multiple options:

1. quantify on context of both x and y

- allows x and y to be VERY different
- weak refinement, no transitivity

2. require that all contexts of x be contexts of y

- unpleasant side conditions $(y \subseteq x)$
- stronger refinement

3. define a type system on components

- complex type system
- strongest refinement, implies point 2

What quantification on context?

Multiple options:

1. quantify on context of both x and y

- allows x and y to be VERY different
- weak refinement, no transitivity

2. require that all contexts of x be contexts of y

- unpleasant side conditions $(y \subseteq x)$
- stronger refinement

3. define a type system on components

- complex type system
- strongest refinement, implies point 2

Contextual refinement

Improved definition: $x \preccurlyeq c t x y$ when:

- for all (z, res)
- for all values $v \in\{$ Halted, Failed $\}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
(z, \text { regs }) \text { is a context of } x \\
\exists n, \text { machine_run } n(z \bowtie x) \text { regs }=v
\end{array} \Rightarrow\right. \\
& \left\{\begin{array}{l}
(z, \text { regs }) \text { is a context of } y \\
\exists n, \text { machine } r \text { run } n(z \bowtie y) \text { regs }=v
\end{array}\right.
\end{aligned}
$$

Contextual refinement

Improved definition: $x \preccurlyeq c t x y$ when:

- for all (z, res)
- for all values $v \in\{$ Halted, Failed $\}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
(z, \text { regs }) \text { is a context of } x \\
\exists n, \text { machine_run } n(z \bowtie x) \text { regs }=v
\end{array} \Rightarrow\right. \\
& \left\{\begin{array}{l}
(z, \text { regs }) \text { is a context of } y \\
\exists n, \text { machine_run } n(z \bowtie y) \text { regs }=v
\end{array}\right.
\end{aligned}
$$

A few problems remain

Empty quantification: because of finite memory

A few problems remain

Empty quantification: because of finite memory
\Rightarrow require that x leave some space free
\Rightarrow helps with proofs as well

A few problems remain

Empty quantification: because of finite memory
\Rightarrow require that x leave some space free
\Rightarrow helps with proofs as well

Components can be too different:

A few problems remain

Empty quantification: because of finite memory
\Rightarrow require that x leave some space free
\Rightarrow helps with proofs as well

Components can be too different:
\Rightarrow require that dom y.exports \subseteq dom x.exports

Final definition

- dom x.segment $\cap[0 ;$ ctxt_size $)=\emptyset$
- dom y.exports \subseteq dom x.exports
- for all (z, reg), for all $v \in\{$ Halted, Failed $\}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
(z, \text { regs }) \text { is a context of } x \\
\exists n, \text { machine_run } n(z \bowtie x) \text { res }=v
\end{array} \Rightarrow\right. \\
& \left\{\begin{array}{l}
(z, \text { regs }) \text { is a context of } y \\
\exists n, \text { machine_run } n(z \bowtie y) \text { res }=v
\end{array}\right.
\end{aligned}
$$

Good properties of contextual refinement

non-trivial: $\exists x y, x \neq y \wedge x \preccurlyeq \operatorname{ctx} y$

Good properties of contextual refinement

non-trivial: $\exists x y, x \neq y \wedge x \preccurlyeq \operatorname{ctx} y$
reflexive: x well-formed $\Rightarrow x \preccurlyeq c t x x$

Good properties of contextual refinement

non-trivial: $\exists x y, x \neq y \wedge x \preccurlyeq \operatorname{ctx} y$
reflexive: x well-formed $\Rightarrow x \preccurlyeq \operatorname{ctx} x$
transitive: $x \preccurlyeq_{c t x} y \wedge y \preccurlyeq \preccurlyeq_{c t x} z \Rightarrow x \preccurlyeq c t x z$

Good properties of contextual refinement

non-trivial: $\exists x y, x \neq y \wedge x \preccurlyeq \operatorname{ctx} y$
reflexive: x well-formed $\Rightarrow x \preccurlyeq c t x x$
transitive: $x \preccurlyeq_{c t x} y \wedge y \preccurlyeq c t x^{z \Rightarrow x} \preccurlyeq_{c t x} z$
compositional: if x and y disjoint

$$
x \preccurlyeq_{\operatorname{ctx}} x^{\prime} \wedge y \preccurlyeq_{\operatorname{ctx}} y^{\prime} \Rightarrow(x \bowtie y) \preccurlyeq_{\operatorname{ctx}}\left(x^{\prime} \bowtie y^{\prime}\right)
$$

Other properties of contextual refinement

Other consequences: if $x \preccurlyeq c t x y$ then

- All public memory of x and y is the same

Other properties of contextual refinement

Other consequences: if $x \preccurlyeq_{c t x} y$ then

- All public memory of x and y is the same
- Depends on absolute memory position

Other properties of contextual refinement

Other consequences: if $x \preccurlyeq_{c t x} y$ then

- All public memory of x and y is the same
- Depends on absolute memory position
- Non-terminating programs refine pretty-much anything

Other properties of contextual refinement

Other consequences: if $x \preccurlyeq_{c t x} y$ then

- All public memory of x and y is the same
- Depends on absolute memory position
- Non-terminating programs refine pretty-much anything
- E capabilities behave in the same way

Other properties of contextual refinement

Other consequences: if $x \preccurlyeq_{c t x} y$ then

- All public memory of x and y is the same
- Depends on absolute memory position
- Non-terminating programs refine pretty-much anything
- E capabilities behave in the same way
- dom $($ segment $y) \subseteq \operatorname{dom}($ segment $x)$

Growing and shrinking components

if z has no exports then:

- if $x \preccurlyeq \operatorname{ctx} y$ then $x \bowtie z \preccurlyeq c t x y$
- if $x \preccurlyeq \operatorname{ctx} y \bowtie z$ then $x \preccurlyeq c t x y$

Validity relation

Unary validity relation

Goal: capture values safe to share with unknown code

$$
\begin{array}{ll}
\mathcal{V}(z) & :=\text { True } \\
\mathcal{V}(0, b, e, a) & :=\text { True }
\end{array}
$$

Unary validity relation

Goal: capture values safe to share with unknown code

$$
\begin{array}{ll}
\mathcal{V}(z) & :=\text { True } \\
\mathcal{V}(0, b, e, a) & :=\text { True } \\
\mathcal{V}(\mathrm{E}, b, e, a) & :=\triangleright \square \mathcal{E}(\mathrm{RX}, b, e, a)
\end{array}
$$

Unary validity relation

Goal: capture values safe to share with unknown code
$\mathcal{V}(z)$
$\mathcal{V}(0, b, e, a) \quad:=$ True
$\mathcal{V}(\mathrm{E}, b, e, a) \quad:=\triangleright \square \mathcal{E}(\mathrm{RX}, b, e, a)$
$\mathcal{V}(\mathrm{R} / \mathrm{RX}, b, e, a) \quad:=\underset{a \in[b ; e)}{\notin} \exists P,\left\{\begin{array}{l}\exists w, a \mapsto_{a} w * P(w) * \\ \triangleright \square \forall w, P(w)-* \mathcal{V}(w)\end{array}\right.$

Unary validity relation

Goal: capture values safe to share with unknown code
$\mathcal{V}(z)$
$:=$ True
$\mathcal{V}(0, b, e, a) \quad:=$ True
$\mathcal{V}(\mathrm{E}, b, e, a) \quad:=\triangleright \square \mathcal{E}(\mathrm{RX}, b, e, a)$
$\mathcal{V}(\mathrm{R} / \mathrm{RX}, b, e, a) \quad:=\underset{a \in[b ; e)}{*} \exists P,\left\{\begin{array}{l}\exists w, a \mapsto_{a} w * P(w) * \\ \triangleright \square \forall w, P(w)-* \mathcal{V}(w)\end{array}\right.$
$\mathcal{V}(\mathrm{RW} / \mathrm{RWX}, b, e, a):=\mathcal{H} \exists w, a \mapsto_{a} w * \mathcal{V}(w)$

$$
a \in[b ; e)
$$

Unary validity relation

Goal: capture values safe to share with unknown code

$$
\begin{array}{ll}
\mathcal{V}(z) & :=\text { True } \\
\mathcal{V}(0, b, e, a) & :=\text { True } \\
\mathcal{V}(\mathrm{E}, b, e, a) & :=\triangleright \square \mathcal{E}(\mathrm{RX}, b, e, a) \\
\mathcal{V}(\mathrm{R} / \mathrm{RX}, b, e, a) & :=\underset{a \in[b ; e)}{\notin \exists P,\left\{\begin{array}{l}
\exists w, a \mapsto_{a} w * P(w) * \\
\triangleright \square w, P(w)-* \mathcal{V}(w)
\end{array}\right.} \begin{aligned}
\mathcal{V}(\mathrm{RW} / \mathrm{RWX}, b, e, a) & :=\underset{a \in[b ; e)}{\notin w, a \mapsto_{a} w * \mathcal{V}(w)}
\end{aligned}
\end{array}
$$

Recursive definition possible thanks to Iris' later modality (\triangleright)

Unary expression relation

Goal: capture values safe to execute with unknown code

$$
\begin{aligned}
\mathcal{E}(w):= & \forall \text { regs } \in \text { RegName } \rightarrow \text { Addr, } \operatorname{regs}(\mathrm{pc})=w \Rightarrow \\
& \left(\underset{r \in \text { RegName }}{*} r \mapsto_{r} \operatorname{regs}(r) * \mathcal{V}(\operatorname{regs}(r))\right)-* \\
& \text { WP Running }\{v, v=\text { Halted }\}
\end{aligned}
$$

Binary validity relation

Defined on equal values:

$$
\begin{aligned}
& \mathcal{V}(z, z) \quad:=\text { True } \\
& \mathcal{V}((0, b, e, a),-) \quad:=\text { True } \\
& \mathcal{V}\left((\mathrm{E}, b, e, a),{ }_{-}\right) \quad:=\triangleright \square \mathcal{E}((\mathrm{RX}, b, e, a),(\mathrm{RX}, b, e, a)) \\
& \left.\mathcal{V}((\mathrm{R} / \mathrm{RX}, b, e, a),)_{-}\right):=\underset{a \in[b ; e)}{\notin} \exists P,\left\{\begin{array}{l}
\exists w w^{\prime}, a \mapsto_{a} w * a \mapsto_{a} w^{\prime} * P\left(w, w^{\prime}\right) \\
\triangleright \square \forall w w^{\prime}, P\left(w, w^{\prime}\right)-* \mathcal{V}\left(w, w^{\prime}\right)
\end{array} *\right. \\
& \mathcal{V}\left((\mathrm{RW} / \mathrm{RWX}, b, e, a),{ }_{-}\right):=\underset{a \in[b ; e)}{*} \exists w w^{\prime}, a \mapsto_{a} w * a \mapsto_{a} w^{\prime} * \mathcal{V}\left(w, w^{\prime}\right)
\end{aligned}
$$

Binary expression relation

$$
\begin{aligned}
\mathcal{E}\left(w_{\ell}, w_{r}\right):= & \forall \operatorname{regs}_{\ell}, \operatorname{regs}_{r}, \operatorname{regs}_{\ell}(\mathrm{pc})=w_{\ell} \wedge \operatorname{regs}_{r}(\mathrm{pc})=w_{r} \Rightarrow \\
& \left(\underset{\left.r \in \text { RegName }^{*} \mapsto_{r} \operatorname{regs}_{\ell}(r) * r \mapsto_{r} \operatorname{regs}_{r}(r) * \mathcal{V}\left(\operatorname{regs}_{\ell}(r), \operatorname{regs}_{r}(r)\right)\right)-*}{ }\right. \\
& \text { WP (Running, Running })\left\{\left(v_{\ell}, v_{r}\right), v_{\ell}=\text { Halted } \Rightarrow v_{r}=\text { Halted }\right\}
\end{aligned}
$$

Binary expression relation

$$
\begin{aligned}
\mathcal{E}\left(w_{\ell}, w_{r}\right):= & \forall \operatorname{regs}_{\ell}, \operatorname{regs}_{r}, \operatorname{regs}_{\ell}(\mathrm{pc})=w_{\ell} \wedge \operatorname{regs}_{r}(\mathrm{pc})=w_{r} \Rightarrow \\
& \left(\underset{\left.r \in \text { RegName }^{*} \operatorname{regs}_{\ell}(r) * r \mapsto_{r} \operatorname{regs}_{r}(r) * \mathcal{V}\left(\operatorname{regs}_{\ell}(r), \operatorname{regs}_{r}(r)\right)\right)-*}{ }\right. \\
& \text { WP (Running, Running })\left\{\left(v_{\ell}, v_{r}\right), v_{\ell}=\text { Halted } \Rightarrow v_{r}=\text { Halted }\right\}
\end{aligned}
$$

\Rightarrow similar implication to the one in contextual refinement

Fundamental theorem on logical relations

If a capability is safe to share, it is safe to execute

Fundamental theorem on logical relations

If a capability is safe to share, it is safe to execute

FTLR

$$
\begin{aligned}
& \text { spec_ctx } \Rightarrow \\
& \mathcal{V}((p, b, e, a),(p, b, e, a)) \Rightarrow \\
& \mathcal{E}((p, b, e, a),(p, b, e, a))
\end{aligned}
$$

Exports relation

Goal: link validity (words) to CR (components)

Exports relation

Goal: link validity (words) to CR (components)

Exports relation

$$
\mathcal{V}_{\exp }(x, y):=\underset{s \mapsto w_{r} \in y . \operatorname{*xports}}{ } \nexists w_{\ell}, s \mapsto w_{\ell} \in x . \operatorname{exports} * \mathcal{V}\left(w_{\ell}, w_{r}\right)
$$

Exports relation

Goal: link validity (words) to CR (components)

Exports relation

$$
\mathcal{V}_{\exp }(x, y):=\underset{s \mapsto w_{r} \in y . \operatorname{exports}}{\mathcal{*}} \exists w_{\ell}, s \mapsto w_{\ell} \in x . \operatorname{exports} * \mathcal{V}\left(w_{\ell}, w_{r}\right)
$$

Implies dom y.exports \subseteq dom x.exports

Compatibility with link

Let x, y, z be components such that:

- x and z are disjoint; y and z are disjoint;
- img $(z$. segment $) \subseteq \mathbb{Z}$;
- dom x.exports \subseteq dom y.exports;

Then:

$$
\begin{gathered}
\operatorname{spec} _\operatorname{ctx} * \mathcal{V}_{\exp }(x, y) * \text { mem_map }(x, z) * \text { mem_map }_{r}(y, z) \\
\Rightarrow \mathcal{V}_{\exp }(x \bowtie z, y \bowtie z)
\end{gathered}
$$

Conclusion

Conclusion

Remaining work:

- Show link between $\mathcal{V}_{\text {exp }}$ and CR
- Strenghten theorem on $\mathcal{V}_{\text {exp }}$ of links

Conclusion

Remaining work:

- Show link between $\mathcal{V}_{\text {exp }}$ and $C R$
- Strenghten theorem on $\mathcal{V}_{\text {exp }}$ of links

Reflexions on CR:

- Too strong relation for many practical cases
- Maybe try to restrict observable behaviors

Thank you for your attention

Questions?

