
Defining contextual refinement for

capability machines

Dorian Lesbre

March 13th, 2023

Logic and Semantics Seminar

Outline

1. Introduction

2. Capability machines

3. Components and contexts

4. Defining contextual refinement

5. Validity relation

6. Conclusion

1

Introduction

Contextual refinement

� Binary relation between two open programs

� Any observable behavior from p is also observable in p′

General definition

p ≼c p
′ := ∀C ,C [p] terminates ⇒ C [p′] terminates

2

Contextual refinement

� Binary relation between two open programs

� Any observable behavior from p is also observable in p′

General definition

p ≼c p
′ := ∀C ,C [p] terminates ⇒ C [p′] terminates

2

Applications of contextual refinement

� Reasoning on open programs using the concrete semantics

� Specify a program in terms of another

� Express representation independence

� Reasoning algebraically about program constructs

BUT: often hard to prove

3

Applications of contextual refinement

� Reasoning on open programs using the concrete semantics

� Specify a program in terms of another

� Express representation independence

� Reasoning algebraically about program constructs

BUT: often hard to prove

3

Applications of contextual refinement

� Reasoning on open programs using the concrete semantics

� Specify a program in terms of another

� Express representation independence

� Reasoning algebraically about program constructs

BUT: often hard to prove

3

Applications of contextual refinement

� Reasoning on open programs using the concrete semantics

� Specify a program in terms of another

� Express representation independence

� Reasoning algebraically about program constructs

BUT: often hard to prove

3

Applications of contextual refinement

� Reasoning on open programs using the concrete semantics

� Specify a program in terms of another

� Express representation independence

� Reasoning algebraically about program constructs

BUT: often hard to prove

3

Example: specification as a program

Formal specification:

∀P , I , f , xs, ℓ,{
isList ℓ xs ∗ all P xs ∗ I [] a ∗
(∀x , x , a′, ys, {P x ∗ I ys a′} f x a′ {r . I (x :: ys) r})

}
foo f a ℓ

{r . isList ℓ xs ∗ I xs r}

Specification as a program:

let rec foo_spec f a l = match l with

| [] -> a

| x::xs -> f x (foo_spec f a xs)

4

Example: specification as a program

Formal specification:

∀P , I , f , xs, ℓ,{
isList ℓ xs ∗ all P xs ∗ I [] a ∗
(∀x , x , a′, ys, {P x ∗ I ys a′} f x a′ {r . I (x :: ys) r})

}
foo f a ℓ

{r . isList ℓ xs ∗ I xs r}
Specification as a program:

let rec foo_spec f a l = match l with

| [] -> a

| x::xs -> f x (foo_spec f a xs)

4

Example: representation independence

let counter () =

let x = ref 0 in

let incr () =

x := !x + 1

in

let read () = !x

in incr, read

let counter_neg () =

let x = ref 0 in

let incr () =

x := !x - 1

in

let read () = - !x

in incr, read

5

Capability machines

What is a capability machine

� Security oriented CPU

� Check memory access via special machine words:

Word = Z ⊔ Cap

Capability

c ∈ Cap := (p, b, e, a)

where p ∈ {O, E, R, RW, RX, RWX}

⇒ gives access to [b; e) with permission p

6

What is a capability machine

� Security oriented CPU

� Check memory access via special machine words:

Word = Z ⊔ Cap

Capability

c ∈ Cap := (p, b, e, a)

where p ∈ {O, E, R, RW, RX, RWX}

⇒ gives access to [b; e) with permission p

6

Memory access via capabilities

Registers:

Memory:

pc r1 r2 · · · rn

RX 42 RW · · · 0

· · · code · · · data 1 R · · · data 2 · · ·

7

Permission order

O

E
R

RXRW

RWX

8

Memory access via capabilities

Very few instructions modify capabilities :

� lea r z changes a capability’s address to a + z

� subseg r b′ e ′ modifies the range to [b′; e ′) ⊆ [b; e)

� restrict r p′ modifies the permission to p′ ≼ p

� jmp r and jnz r ρ change E to RX.

9

Memory access via capabilities

Very few instructions modify capabilities :

� lea r z changes a capability’s address to a + z

� subseg r b′ e ′ modifies the range to [b′; e ′) ⊆ [b; e)

� restrict r p′ modifies the permission to p′ ≼ p

� jmp r and jnz r ρ change E to RX.

9

Memory access via capabilities

Very few instructions modify capabilities :

� lea r z changes a capability’s address to a + z

� subseg r b′ e ′ modifies the range to [b′; e ′) ⊆ [b; e)

� restrict r p′ modifies the permission to p′ ≼ p

� jmp r and jnz r ρ change E to RX.

9

Memory access via capabilities

Very few instructions modify capabilities :

� lea r z changes a capability’s address to a + z

� subseg r b′ e ′ modifies the range to [b′; e ′) ⊆ [b; e)

� restrict r p′ modifies the permission to p′ ≼ p

� jmp r and jnz r ρ change E to RX.

9

Cerise capability machine model

Simple model:

� Single core

� No interruptions

� No privilege levels

� No virtual memory

� Limited instruction set

But captures:

� Finite memory

� Fixed set of registers

� Instructions encoded as

integers

10

Cerise capability machine model

Simple model:

� Single core

� No interruptions

� No privilege levels

� No virtual memory

� Limited instruction set

But captures:

� Finite memory

� Fixed set of registers

� Instructions encoded as

integers

10

Cerise instruction set

ρ ∈ Z ⊔ RegName

i ∈ Instr := fail | halt | jmp r | jnz r r |
move r ρ | load r r | store r ρ |
add r ρ ρ | sub r ρ ρ | lt r ρ ρ |
restrict r ρ | subseg r ρ ρ | lea r ρ | isptr r r |
getp r r | getb r r | gete r r | geta r r

11

Machine state

(mem, regs) ∈ ExecConf := (Addr → Word)× (RegName → Word)

δ ∈ ExecMode := Halted | Failed | Running

Machine state: ExecMode× ExecConf

12

Small step semantics

ExecStep

(Running, (mem, regs)) →
execInstr mem regs i if regs(pc) = (p, b, e, a) ∧

RX ≼ p ∧ a ∈ [b; e) ∧
decodeInstr(mem(a)) = Some i

Failed, (mem, regs) otherwise

13

Components and contexts

Defining open and closed program

What is a program?

� A region of memory containing encoded instructions

� A register state RegName → Word

An open program?

A closed program?

A context?

14

Defining open and closed program

What is a program?

� A region of memory containing encoded instructions

� A register state RegName → Word

An open program?

A closed program?

A context?

14

Defining open and closed program

What is a program?

� A region of memory containing encoded instructions

� A register state RegName → Word

An open program?

A closed program?

A context?

14

Defining open programs: components

Open program:

� segment of memory

� interface to access it

Component

component :=

segment : Addr ⇀ Word

imports : Addr ⇀ Symbols

exports : Symbols ⇀ Word

15

Defining open programs: components

Open program:

� segment of memory

� interface to access it

Component

component :=

segment : Addr ⇀ Word

imports : Addr ⇀ Symbols

exports : Symbols ⇀ Word

15

Well-formed components

� imports and exports symbols are disjoint:

img (imports) ∩ dom (exports) = ∅

� import addresses are part of the component’s memory:

dom (imports) ⊆ dom (segment)

� contained capabilities only point to its memory:

∀ (, b, e,) ∈ img segment ∪ img exports,

[b; e) ⊆ dom segment

16

Well-formed components

� imports and exports symbols are disjoint:

img (imports) ∩ dom (exports) = ∅
� import addresses are part of the component’s memory:

dom (imports) ⊆ dom (segment)

� contained capabilities only point to its memory:

∀ (, b, e,) ∈ img segment ∪ img exports,

[b; e) ⊆ dom segment

16

Well-formed components

� imports and exports symbols are disjoint:

img (imports) ∩ dom (exports) = ∅
� import addresses are part of the component’s memory:

dom (imports) ⊆ dom (segment)

� contained capabilities only point to its memory:

∀ (, b, e,) ∈ img segment ∪ img exports,

[b; e) ⊆ dom segment

16

Closed program

Program

A program is a pair (p, regs) :

� p is a well-formed component with no imports

� regs ∈ RegName → Word is a register state

� capabilities in regs point to p

17

Linking

x : s1 s2

exports = {s3 7→ w3, s4 7→ w4}

y : s3

exports = {s1 7→ w1}

x ▷◁ y : w1 s2 w3

exports = {s3 7→ w3, s4 7→ w4, s1 7→ w1}

18

Linking

x : s1 s2

exports = {s3 7→ w3, s4 7→ w4}

y : s3

exports = {s1 7→ w1}

x ▷◁ y : w1 s2 w3

exports = {s3 7→ w3, s4 7→ w4, s1 7→ w1}

18

Linking

Requires components to be disjoint and well-formed:

x ▷◁ y :=

exports := x .exports ⊎ y .exports

imports :=

{
a 7→ s

∣∣∣∣∣ a 7→ s ∈ x .imports ⊎ y .imports ∧
s 7→ /∈ x .exports ⊎ y .exports

}
segment := x .segment[y .exports ◦ x .imports] ⊎

y .segment[x .exports ◦ y .imports]

19

Properties of linking

� x #ℓ y ⇒ x ▷◁ y well-formed

� commutative: x #ℓ y ⇒ x ▷◁ y = y ▷◁ x

� associative:

x #ℓ y ∧ y #ℓ z ∧ x #ℓ z ⇒ x ▷◁ (y ▷◁ z) = (x ▷◁ y) ▷◁ z

20

Context

”Just what is needed” to turn a component into a program.

Context

A context for a component x is a pair (z , regs) where:

� x #ℓ z

� img x .imports ⊆ dom z .exports

� img z .imports ⊆ dom x .exports

� capabilities in regs point to z

21

Context

”Just what is needed” to turn a component into a program.

Context

A context for a component x is a pair (z , regs) where:

� x #ℓ z

� img x .imports ⊆ dom z .exports

� img z .imports ⊆ dom x .exports

� capabilities in regs point to z

21

Properties of context

� (z , regs) is a context of x ⇒ (z ▷◁ x , regs) is a program

� (z , regs) is a context of x ▷◁ y ⇔
(z ▷◁ x , regs) is a context of y and

capabilities in regs point to z

� if y .exports = ∅ and (z , regs) is a context of x ▷◁ y then

(z , regs) is a context of y

22

Properties of context

� (z , regs) is a context of x ⇒ (z ▷◁ x , regs) is a program

� (z , regs) is a context of x ▷◁ y ⇔
(z ▷◁ x , regs) is a context of y and

capabilities in regs point to z

� if y .exports = ∅ and (z , regs) is a context of x ▷◁ y then

(z , regs) is a context of y

22

Properties of context

� (z , regs) is a context of x ⇒ (z ▷◁ x , regs) is a program

� (z , regs) is a context of x ▷◁ y ⇔
(z ▷◁ x , regs) is a context of y and

capabilities in regs point to z

� if y .exports = ∅ and (z , regs) is a context of x ▷◁ y then

(z , regs) is a context of y

22

Defining contextual refinement

Contextual refinement

General idea: x ≼ctx y when:

� for all context (z , regs)

� for all values v ∈ {Halted, Failed}

if ∃n, machine run n (z ▷◁ x) regs = v

then ∃n, machine run n (z ▷◁ y) regs = v

23

Contextual refinement

General idea: x ≼ctx y when:

� for all context (z , regs)

� for all values v ∈ {Halted, Failed}

if ∃n, machine run n (z ▷◁ x) regs = v

then ∃n, machine run n (z ▷◁ y) regs = v

23

What quantification on context?

Multiple options:

1. quantify on context of both x and y

� allows x and y to be VERY different

� weak refinement, no transitivity

2. require that all contexts of x be contexts of y
� unpleasant side conditions (y ⊆ x)

� stronger refinement

3. define a type system on components
� complex type system

� strongest refinement, implies point 2

24

What quantification on context?

Multiple options:

1. quantify on context of both x and y
� allows x and y to be VERY different

� weak refinement, no transitivity

2. require that all contexts of x be contexts of y
� unpleasant side conditions (y ⊆ x)

� stronger refinement

3. define a type system on components
� complex type system

� strongest refinement, implies point 2

24

What quantification on context?

Multiple options:

1. quantify on context of both x and y
� allows x and y to be VERY different

� weak refinement, no transitivity

2. require that all contexts of x be contexts of y

� unpleasant side conditions (y ⊆ x)

� stronger refinement

3. define a type system on components
� complex type system

� strongest refinement, implies point 2

24

What quantification on context?

Multiple options:

1. quantify on context of both x and y
� allows x and y to be VERY different

� weak refinement, no transitivity

2. require that all contexts of x be contexts of y
� unpleasant side conditions (y ⊆ x)

� stronger refinement

3. define a type system on components
� complex type system

� strongest refinement, implies point 2

24

What quantification on context?

Multiple options:

1. quantify on context of both x and y
� allows x and y to be VERY different

� weak refinement, no transitivity

2. require that all contexts of x be contexts of y
� unpleasant side conditions (y ⊆ x)

� stronger refinement

3. define a type system on components

� complex type system

� strongest refinement, implies point 2

24

What quantification on context?

Multiple options:

1. quantify on context of both x and y
� allows x and y to be VERY different

� weak refinement, no transitivity

2. require that all contexts of x be contexts of y
� unpleasant side conditions (y ⊆ x)

� stronger refinement

3. define a type system on components
� complex type system

� strongest refinement, implies point 2

24

What quantification on context?

Multiple options:

1. quantify on context of both x and y
� allows x and y to be VERY different

� weak refinement, no transitivity

2. require that all contexts of x be contexts of y
� unpleasant side conditions (y ⊆ x)

� stronger refinement

3. define a type system on components
� complex type system

� strongest refinement, implies point 2

24

Contextual refinement

Improved definition: x ≼ctx y when:

� for all (z , regs)

� for all values v ∈ {Halted, Failed}

{
(z , regs) is a context of x

∃n, machine run n (z ▷◁ x) regs = v
⇒

{
(z , regs) is a context of y

∃n, machine run n (z ▷◁ y) regs = v
25

Contextual refinement

Improved definition: x ≼ctx y when:

� for all (z , regs)

� for all values v ∈ {Halted, Failed}

{
(z , regs) is a context of x

∃n, machine run n (z ▷◁ x) regs = v
⇒

{
(z , regs) is a context of y

∃n, machine run n (z ▷◁ y) regs = v
25

A few problems remain

Empty quantification: because of finite memory

⇒ require that x leave some space free

⇒ helps with proofs as well

Components can be too different:

⇒ require that dom y .exports ⊆ dom x .exports

26

A few problems remain

Empty quantification: because of finite memory

⇒ require that x leave some space free

⇒ helps with proofs as well

Components can be too different:

⇒ require that dom y .exports ⊆ dom x .exports

26

A few problems remain

Empty quantification: because of finite memory

⇒ require that x leave some space free

⇒ helps with proofs as well

Components can be too different:

⇒ require that dom y .exports ⊆ dom x .exports

26

A few problems remain

Empty quantification: because of finite memory

⇒ require that x leave some space free

⇒ helps with proofs as well

Components can be too different:

⇒ require that dom y .exports ⊆ dom x .exports

26

Final definition

� dom x .segment ∩ [0; ctxt size) = ∅
� dom y .exports ⊆ dom x .exports

� for all (z , regs), for all v ∈ {Halted, Failed}

{
(z , regs) is a context of x

∃n, machine run n (z ▷◁ x) regs = v
⇒

{
(z , regs) is a context of y

∃n, machine run n (z ▷◁ y) regs = v
27

Good properties of contextual refinement

non-trivial: ∃ x y , x ̸= y ∧ x ≼ctx y

reflexive: x well-formed ⇒ x ≼ctx x

transitive: x ≼ctx y ∧ y ≼ctx z ⇒ x ≼ctx z

compositional: if x and y disjoint

x ≼ctx x ′ ∧ y ≼ctx y ′ ⇒ (x ▷◁ y) ≼ctx (x ′ ▷◁ y ′)

28

Good properties of contextual refinement

non-trivial: ∃ x y , x ̸= y ∧ x ≼ctx y

reflexive: x well-formed ⇒ x ≼ctx x

transitive: x ≼ctx y ∧ y ≼ctx z ⇒ x ≼ctx z

compositional: if x and y disjoint

x ≼ctx x ′ ∧ y ≼ctx y ′ ⇒ (x ▷◁ y) ≼ctx (x ′ ▷◁ y ′)

28

Good properties of contextual refinement

non-trivial: ∃ x y , x ̸= y ∧ x ≼ctx y

reflexive: x well-formed ⇒ x ≼ctx x

transitive: x ≼ctx y ∧ y ≼ctx z ⇒ x ≼ctx z

compositional: if x and y disjoint

x ≼ctx x ′ ∧ y ≼ctx y ′ ⇒ (x ▷◁ y) ≼ctx (x ′ ▷◁ y ′)

28

Good properties of contextual refinement

non-trivial: ∃ x y , x ̸= y ∧ x ≼ctx y

reflexive: x well-formed ⇒ x ≼ctx x

transitive: x ≼ctx y ∧ y ≼ctx z ⇒ x ≼ctx z

compositional: if x and y disjoint

x ≼ctx x ′ ∧ y ≼ctx y ′ ⇒ (x ▷◁ y) ≼ctx (x ′ ▷◁ y ′)

28

Other properties of contextual refinement

Other consequences: if x ≼ctx y then

� All public memory of x and y is the same

� Depends on absolute memory position

� Non-terminating programs refine pretty-much anything

� E capabilities behave in the same way

� dom(segment y) ⊆ dom(segment x)

29

Other properties of contextual refinement

Other consequences: if x ≼ctx y then

� All public memory of x and y is the same

� Depends on absolute memory position

� Non-terminating programs refine pretty-much anything

� E capabilities behave in the same way

� dom(segment y) ⊆ dom(segment x)

29

Other properties of contextual refinement

Other consequences: if x ≼ctx y then

� All public memory of x and y is the same

� Depends on absolute memory position

� Non-terminating programs refine pretty-much anything

� E capabilities behave in the same way

� dom(segment y) ⊆ dom(segment x)

29

Other properties of contextual refinement

Other consequences: if x ≼ctx y then

� All public memory of x and y is the same

� Depends on absolute memory position

� Non-terminating programs refine pretty-much anything

� E capabilities behave in the same way

� dom(segment y) ⊆ dom(segment x)

29

Other properties of contextual refinement

Other consequences: if x ≼ctx y then

� All public memory of x and y is the same

� Depends on absolute memory position

� Non-terminating programs refine pretty-much anything

� E capabilities behave in the same way

� dom(segment y) ⊆ dom(segment x)

29

Growing and shrinking components

if z has no exports then:

� if x ≼ctx y then x ▷◁ z ≼ctx y

� if x ≼ctx y ▷◁ z then x ≼ctx y

30

Validity relation

Unary validity relation

Goal: capture values safe to share with unknown code

V(z) := True

V(O, b, e, a) := True

V(E, b, e, a) := ▷□ E(RX, b, e, a)

V(R/RX, b, e, a) := ∗
a∈[b;e)

∃P ,

{
∃w , a 7→a w ∗ P(w) ∗
▷□ ∀w , P(w) −∗ V(w)

V(RW/RWX, b, e, a) := ∗
a∈[b;e)

∃w , a 7→a w ∗ V(w)

Recursive definition possible thanks to Iris’ later modality (▷)

31

Unary validity relation

Goal: capture values safe to share with unknown code

V(z) := True

V(O, b, e, a) := True

V(E, b, e, a) := ▷□ E(RX, b, e, a)

V(R/RX, b, e, a) := ∗
a∈[b;e)

∃P ,

{
∃w , a 7→a w ∗ P(w) ∗
▷□ ∀w , P(w) −∗ V(w)

V(RW/RWX, b, e, a) := ∗
a∈[b;e)

∃w , a 7→a w ∗ V(w)

Recursive definition possible thanks to Iris’ later modality (▷)

31

Unary validity relation

Goal: capture values safe to share with unknown code

V(z) := True

V(O, b, e, a) := True

V(E, b, e, a) := ▷□ E(RX, b, e, a)

V(R/RX, b, e, a) := ∗
a∈[b;e)

∃P ,

{
∃w , a 7→a w ∗ P(w) ∗
▷□ ∀w , P(w) −∗ V(w)

V(RW/RWX, b, e, a) := ∗
a∈[b;e)

∃w , a 7→a w ∗ V(w)

Recursive definition possible thanks to Iris’ later modality (▷)

31

Unary validity relation

Goal: capture values safe to share with unknown code

V(z) := True

V(O, b, e, a) := True

V(E, b, e, a) := ▷□ E(RX, b, e, a)

V(R/RX, b, e, a) := ∗
a∈[b;e)

∃P ,

{
∃w , a 7→a w ∗ P(w) ∗
▷□ ∀w , P(w) −∗ V(w)

V(RW/RWX, b, e, a) := ∗
a∈[b;e)

∃w , a 7→a w ∗ V(w)

Recursive definition possible thanks to Iris’ later modality (▷)

31

Unary validity relation

Goal: capture values safe to share with unknown code

V(z) := True

V(O, b, e, a) := True

V(E, b, e, a) := ▷□ E(RX, b, e, a)

V(R/RX, b, e, a) := ∗
a∈[b;e)

∃P ,

{
∃w , a 7→a w ∗ P(w) ∗
▷□ ∀w , P(w) −∗ V(w)

V(RW/RWX, b, e, a) := ∗
a∈[b;e)

∃w , a 7→a w ∗ V(w)

Recursive definition possible thanks to Iris’ later modality (▷)
31

Unary expression relation

Goal: capture values safe to execute with unknown code

E(w) := ∀ regs ∈ RegName → Addr, regsℓ(pc) = w ⇒(∗
r∈RegName

r 7→r regs(r) ∗ V(regs(r))

)
−∗

WP Running {v , v = Halted}

32

Binary validity relation

Defined on equal values:

V (z , z) := True

V ((O, b, e, a),) := True

V ((E, b, e, a),) := ▷□ E ((RX, b, e, a), (RX, b, e, a))

V ((R/RX, b, e, a),) := ∗
a∈[b;e)

∃P ,

{
∃w w ′, a 7→a w ∗ a ↣a w

′ ∗P(w ,w ′) ∗
▷□ ∀w w ′, P(w ,w ′) −∗ V (w , w ′)

V ((RW/RWX, b, e, a),) := ∗
a∈[b;e)

∃w w ′, a 7→a w ∗ a ↣a w
′ ∗ V (w , w ′)

33

Binary expression relation

E (wℓ, wr) := ∀ regsℓ, regsr , regsℓ(pc) = wℓ ∧ regsr (pc) = wr ⇒(∗
r∈RegName

r 7→r regsℓ(r) ∗ r ↣r regsr (r) ∗ V (regsℓ(r), regsr (r))

)
−∗

WP (Running, Running) {(vℓ, vr), vℓ = Halted ⇒ vr = Halted}

⇒ similar implication to the one in contextual refinement

34

Binary expression relation

E (wℓ, wr) := ∀ regsℓ, regsr , regsℓ(pc) = wℓ ∧ regsr (pc) = wr ⇒(∗
r∈RegName

r 7→r regsℓ(r) ∗ r ↣r regsr (r) ∗ V (regsℓ(r), regsr (r))

)
−∗

WP (Running, Running) {(vℓ, vr), vℓ = Halted ⇒ vr = Halted}

⇒ similar implication to the one in contextual refinement

34

Fundamental theorem on logical relations

If a capability is safe to share, it is safe to execute

FTLR

spec ctx ⇒
V ((p, b, e, a), (p, b, e, a)) ⇒
E ((p, b, e, a), (p, b, e, a))

35

Fundamental theorem on logical relations

If a capability is safe to share, it is safe to execute

FTLR

spec ctx ⇒
V ((p, b, e, a), (p, b, e, a)) ⇒
E ((p, b, e, a), (p, b, e, a))

35

Exports relation

Goal: link validity (words) to CR (components)

Exports relation

Vexp (x , y) := ∗
s 7→ wr ∈ y .exports

∃wℓ, s 7→ wℓ ∈ x .exports ∗ V (wℓ, wr)

Implies dom y .exports ⊆ dom x .exports

36

Exports relation

Goal: link validity (words) to CR (components)

Exports relation

Vexp (x , y) := ∗
s 7→ wr ∈ y .exports

∃wℓ, s 7→ wℓ ∈ x .exports ∗ V (wℓ, wr)

Implies dom y .exports ⊆ dom x .exports

36

Exports relation

Goal: link validity (words) to CR (components)

Exports relation

Vexp (x , y) := ∗
s 7→ wr ∈ y .exports

∃wℓ, s 7→ wℓ ∈ x .exports ∗ V (wℓ, wr)

Implies dom y .exports ⊆ dom x .exports

36

Compatibility with link

Let x , y , z be components such that:

� x and z are disjoint; y and z are disjoint;

� img (z .segment) ⊆ Z;
� dom x .exports ⊆ dom y .exports;

Then:

spec ctx ∗ Vexp (x , y) ∗mem mapℓ(x , z) ∗mem mapr(y , z)

⇛ Vexp (x ▷◁ z , y ▷◁ z)

37

Conclusion

Conclusion

Remaining work:

� Show link between Vexp and CR

� Strenghten theorem on Vexp of links

Reflexions on CR:

� Too strong relation for many practical cases

� Maybe try to restrict observable behaviors

38

Conclusion

Remaining work:

� Show link between Vexp and CR

� Strenghten theorem on Vexp of links

Reflexions on CR:

� Too strong relation for many practical cases

� Maybe try to restrict observable behaviors

38

Thank you for your attention

Questions?

39

	Introduction
	Capability machines
	Components and contexts
	Defining contextual refinement
	Validity relation
	Conclusion

