
École normale supérieure
Department of Computer Science

Causal analysis of rule-based models
of signaling pathways

Jonathan Laurent
jonathan.laurent@ens.fr

Under the supervision of:

Walter Fontana
walter_fontana@hms.harvard.edu

Jérôme Feret
feret@di.ens.fr

August 2015

Acknowledgment
This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and
the U.S. Army Research Office under grant number W911NF-14-1-0367. The views, opinions,
and/or findings contained in this report are those of the authors and should not be interpreted as
representing the official views or policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the Department of Defense.

1. Introduction

When a cell receives a signal from its environment through a membrane receptor, a cascade
of internal reactions is triggered which leads ultimately to its response, usually a change in its
metabolism, its ability to divide, or in the expression level of a gene. Many diseases including
some forms of cancer are related to some defects in these signaling pathways. Such biological
systems usually feature thousands of proteins interacting in a highly concurrent way and their
complexity makes modelling necessary to the development of better biocuration techniques.

1.1. The kappa modelling language

The kappa language was designed to model interactions between proteins with rewriting rules
over site-graphs. We illustrate this with the example of phosphorylation reactions.
Many proteins can be turned on and off by attaching or removing phosphate groups to some of

their residues. The action of attaching a phosphate group to a protein is called phosphorylation
and an enzyme catalyzing a phosphorylation reaction is called a kinase. A kinase may need
to be phosphorylated itself in order to be effective and so signaling pathways often feature
phosphorylation cascades. In kappa, proteins are modelled by agents. An agent features some
sites through which it can bind other agents. Moreover, some sites can hold an internal state,
usually u when unphosphorylated and p when phosphorylated. The number and the nature of
the sites featured by an agent depend on its type, each type of agent being described in the
signature of the kappa model. In most of the examples of this report, signatures have to be
inferred directly from the rules.
Let’s model a kinase by an agent of type K with one binding site d. It acts on a substrate

which is an agent of type S with a binding site d and two phosphorylation sites x and y which
can hold the states u or p. Below are the textual and graphical representations of a kinase with
a free binding site and a substrate which is phosphorylated at site y but not at site x.

K(d) :
d

K S(d, xu, yp) :
d

x

y

S

The interaction between the kinase and the substrate is captured by the rules displayed Figure 1.
The first rule is bidirectional and states that a kinase and a substrate can bind (b) and unbind
(u) to each other through their sites d. The second rule states that if a kinase is bound to a
substrate with an unphosphorylated site x, the latter can get phosphorylated. The third does the
same for y. In the textual notation, a shared exponent denotes the existence of a bond between
two sites. Sites without exponents are considered to be free.
An important remark is that a rule can feature underspecified agents. When it does, it can

be triggered whatever the binding or internal states of the missing sites are. This characteristic
of kappa makes it different from most modelling techniques traditionally used by biologists
like differential equations systems or Petri nets. Indeed, the latter require that one variable
is introduced for each fully specified species, which leads quickly to a combinatorial explosion.
For instance, if a protein has 10 distinct phosphorylation sites, it yields at least 1024 different

1

d

K
d

S
b,u←→

d

K
d

S K(d), S(d)↔ K(d1), S(d1)

d

K
d

x

S
px−→ d

K
d

x

S K(d1), S(d1, xu)→ K(d1), S(d1, xp)

d

K
d

y

S py−→
d

K
d

y

S
K(d1), S(d1, yu)→ K(d1), S(d1, yp)

Figure 1: A simple kappa model for double-phosphorylation

species. The situation in real world signaling networks where many proteins can bind each other
and form large complexes is even worst.
In kappa, a reaction mixture is modelled by a large site-graph. When a pattern matching the

left hand side of a rule r is recognized in it, it can be updated locally according to r. The agents
preserved by r are those of the longest prefix featuring agents of the same type and mentioning
the same sites in both sides of r. The sites they mention are updated according to their state in
the right hand side of r and the others are left unchanged. Agent featured in the left hand side
of r and not in its right hand side are removed and agents featured in the the right hand side of r
and not in its left hand side are created. For instance, the rule K(d), S(xp)→ K(d),K(d) deletes
an instance of S and creates an instance of K. For a rigorous definition of kappa’s semantics,
see [3].
After having specified an initial mixture and a reaction rate for each rule, it is possible to run

stochastic simulations of a model with the kappa simulator [2]. An example of source file for a
small kappa model is provided Appendix A.

1.2. From rules to pathways

The aim of causal analysis is to understand better how pathways emerge from a multitude of
potential low level protein-protein interactions. A great number of these interactions is known
thanks to the progresses of experimental methods but the way they result in complex signaling
behaviors remains to be understood. One difficulty in figuring this out comes from the density of
the reaction network involved along with its apparent lack of structure. In particular, there are
many crosstalks between signalling processes that seem completly unrelated. As a consequence,
small signaling models that focus on a limited number of interactions in order to stay tractable for
human reasoning usually bring a limited insight. Thus, the development of automated analysis
techniques for large models of protein-protein interaction networks appears to be an important
step towards a better understanding of signalling pathways.
In this report, we introduce a formal notion of story as an attempt to precise the fuzzy

concept of pathway. Appendix B features an example of a story generated from the model of
Appendix A. It describes how a set of rule applications can be chained together to make an

2

observable event happen along with the necessary temporal precedence relation between them.
Here, the observable event is the formation of a SoS-Grb2-Shc complex, as mentioned in the last
line of Appendix A. For clarity, the agents that are targeted by each rule application are not
mentioned and only rule names are displayed.
In section 2, we introduce a generic framework for studying event systems and we define the

notion of a story. An important class of such event systems for which efficient algorithms can
be written is studied in section 3. Kappa models are described within this formalism and a
compression algorithm is introduced to compute minimal stories from simulation traces. Then,
we describe some techniques to produce stories statically in section 4.

2. A generic framework for event systems

2.1. Event systems

Let Q a set of states, intuitively the set of all the possible states of the world. A subset of Q
is called a context. Moreover, an event e is defined by a label denoted label(e), a precondition
pre [(e) ⊆ Q and an effect eff [(e) : pre [(e)→ Q. The precondition of an event is the set of states
from which it can be triggered and its effect maps each of these states to a new one. The flat
symbol on pre [distinguishes it from its dual operator pre which returns a set of constraints on
states and which is defined in section 3.
An event system is a triple (Q,E,C) with E a set of events over Q and C ⊆ P(Q) a set of

contexts such that for all event e ∈ E we have pre [(e) ∈ C and ∀c ∈ C, eff [(e)(c) ∈ C. All the
concepts introduced in section 2 are defined relatively to an event system.

2.2. Traces

A trace is defined as a finite sequence of events. Its precondition is defined by induction on its
size by the following equations:

pre [(ε) = Q

pre [(e, t) =
{
q ∈ pre [(e) : eff [(e)(q) ∈ pre [(t)

}
with e an event and t a trace. A trace t is said to be valid in the context c if c ⊆ pre [(t), in
which case we write c ` t. The effect and the postcondition of a trace in context c are defined
by:

eff [c(e1, . . . , en) = eff [(en) ◦ . . . ◦ eff [(e1)
∣∣∣
c

post [c(t) =
(
eff [c(t)

)
(c)

2.3. Concurrent events and equivalent traces

The order in which some events happen might not always matter. Let’s take the example of a
kappa agent which can be phosphorylated on its both sites in parallel by two different enzymes.
Let’s write p1 the event of phosphorylating site 1 and p2 the event of phosphorylating site 2.
Then, we may want the traces (p1, p2) and (p2, p1) to be considered equivalent. Indeed, the
definition of a trace forces us to decide on an order between p1 and p2 but this order is nor

3

relevant neither necessary. Worst, in the real world, p1 and p2 could have happened in the same
time. This draws our motivation to formalize a concept of concurrent events.
Two events e1 and e2 are said to be concurrent in context c if the three following assertions

are equivalent:
c ` e1, e2 c ` e2, e1 c ` e1 ∧ c ` e2

and effc(e1, e2) = effc(e2, e1) when they hold. In this case, we write e1 �c e2. Moreover, e1 and e2

are said to be concurrent if they are in any context c ∈ C, which we write e1 � e2. Finally, two
events e1 and e2 are said to be non-trivially concurrent in context c if e1�c e2 and c ` e1 ∧ c ` e2.
They are non-trivially concurrent if they are concurrent in any context, this being non-trivially
in at least one of them. This last notion admits a nice algebraic characterization for a class of
systems kappa models belongs to, as we see in section 3.2.
As said before, we want to consider two traces differing only by the permutation of concurrent

events to be equivalent. Let c a context. We define the relation 'c as the smallest equivalence
relation on the set of valid traces in context c such that:

e1 �post [
c(t) e2 =⇒ t · (e1, e2) · t′ 'c t · (e2, e1) · t′

where · stands for the concatenation operator on traces. This relation is called the Mazurkieviecz
equivalence in context c. We define ∼ as a stronger equivalence relation on traces that is context-
independent. It is the smallest relation on traces such that:

e1 � e2 =⇒ t · (e1, e2) · t′ ∼ t · (e2, e1) · t′

Two equivalent traces for ∼ are said to be strongly similar . Here, two elements can be permuted
only if they are concurrent in any context and not only in the current one. Note that we have:
t ∼ t′ =⇒ t 'pre [(t) t

′ but the converse is not true. However, we prove in section 3.2 that for
an important subset of kappa models called regular models, the relations ∼ and 'c are identical
in any context c.

2.4. Configurations

Let T the set of all traces on E. An element of the quotient (T / ∼) is called a configuration
and its traces are said to be its trajectories. Let t = e1, . . . , en a trace and Et = {ei}i the set of
its events, each one of them being distinguished so that |Et| = n. The precedence relation �t is
defined as the smallest order relation over Et such that:

(i < j ∧ ¬ (ei � ej)) =⇒ ei �t ej

Besides, a permutation σ of {1, . . . , n} is said to preserve it when eσ(i) �t eσ(j) ⇒ σ(i) ≤ σ(j).
Then, writing σ(t) := eσ(1), . . . , eσ(n) the reordering of t by σ, the following theorem holds:

Theorem 1. Let t and t′ two traces. Then t ∼ t′ if and only if t′ = σ(t) for σ a permutation
preserving the precedence relation on t.

As a consequence, a configuration is represented by a tuple consisting in a set of events along
with an order relation on them. Then, the canonical projection C : T → (T / ∼) maps t to
(Et,�t) as we have indeed t ∼ t′ ⇐⇒ (Et,�t) = (Et′ ,�t′).

4

All trajectories of a configuration (E ,�) can be recovered by ordering the events of E preserv-
ing �. Moreover, as the operators pre [, eff [and post [have the same values on strongly similar
traces, they can also be defined on a configuration from any of its trajectory. As a consequence,
a context being given, we can talk about valid configurations too. Finally, we say that (E ,�) is
a sub-configuration of (E ′,�′) if E ⊆ E ′ and (�) ⊆ (�′).

2.5. Stories

Let Ω a subset of interest of E called set of observable events and c a context. Then, a story
reaching Ω from c is a configuration containing an event of Ω which is valid in c. We write S(Ω, c)
the set of all such stories. When it is non-empty, we say that Ω is reachable from c.
Therefore, we can see stories as proofs of reachability. However, this point of view is misleading

as it takes us away from the spirit of biological pathways stories are aimed to formalize. Indeed,
when biologists study pathways, the reachability of the observable is usually taken for granted
and what really matters is the question of how this process is implemented. For instance, when
designing drugs, it may be of particular interest to identify a step which is common to all the
scenarios leading to the realization of a biological process. This example is in opposition with
the principle of proof-irrelevance most logicians work with which stipulates that all the proofs
of a fact should be considered equivalent. Clearly, we don’t want to formalize pathways in
this spirit. Then, if all elements of S(Ω, c) should not be considered equivalent, should they
be considered all different and equally relevant? It seems the answer here is still no. Indeed,
some stories may contain some events which make no contribution in producing the observable.
Moreover, two stories might feature the phosphorylation of the same agent by two different but
isomorphic enzymes and one may argue they should not be considered different. This motivates
us to introduce notions of compression along with some equivalence relations on S(Ω, c).

2.5.1. Sub-stories and compression

S(Ω, c) can be equipped with a relation CΩ,c such that s CΩ,c s
′ if and only if s is a sub-

configuration of s′, in which case we say that s is a sub-story of s′. A story is said to be minimal
if it has no strict sub-story. When discussing causality, people usually distinguish necessary
causes from sufficient ones. In medicine or in biology, both notions are often too demanding to
be met in practice and a notion of contributive causality is preferred, where an event e1 is said
to be a cause of an event e2 if it is an insufficient but non-redundant part of a condition which is
itself unnecessary but sufficient for the occurence of e2. Minimal stories are defined in this exact
spirit. Indeed, any event e1 of a minimal story explaining e2 is a cause of e2 in this sense.
The kappa simulator implements a technique to extract minimal sub-stories of large stories

called weak-compression. Some details are given in section 3.4. However, a stronger notion of
compression is sometimes needed, as we illustrate now with an example.

2.5.2. The example of double phosphorylation

Let’s consider the kappa model introduced in Figure 1 with the initial mixtureK(d),K(d), S(xu, yu)
and let’s take for an observable rule the rule obs which tests the pattern S(xp, yp) and does

5

nothing. Then, here is an example of a story s0 where the first enzyme binds the substrate,
phosphorylates its two sites and then unbinds:

obsu1

py1

px1

b1

It is useful to see a story as a graph whose nodes are events and whose edges correspond to
the precedence relation over them. For clarity, all the edges are not represented here: only a
transitive reduction of the graph is displayed. Moreover, as explained in section 3.3, a kappa
event consists in a rule along with an instantiation map giving the identifiers of the agents it
targets. Here, an event is labelled ri where r is the name of the rule applied, and i ∈ {1, 2} gives
the identifier of the enzyme involved. There is no need to specify which substrate is targeted as
there is only one in the mixture. Finally s0 illustrates the fact that px1 and py1 are concurrent.
Here are two other stories about the same phenomenon:

s1 : obsu1py1b1u1px1b1

s2 : obsu2py2b2u1px1b1

In s1, the first enzyme unbinds and rebinds the substrate after it has phosphorylated its first site
and before it phosphorylates its second. Remark that if a story is seen as a graph whose edges
correspond to the precedence relation and s and s′ are two valid stories, we have s C s′ if and
only if the graph of s can be embedded in the graph of s′.1 Here, it can be noticed that s0 C s1.
Indeed, we can get s0 from s1 by compressing the (u1, b1) pattern in it.
In s2, after the first enzyme has phosphorylated the site x of the substrate, it unbinds and

the second enzyme binds to phosphorylate y. Contrary to s1, s2 is minimal and cannot be
compressed further. However, one may argue that whether kinase 1 or 2 is used to phosphorylate
the substrate does not really matter. If we abstract away this information, stories s1 and s2 turn
out to be the same and can be represented as follows, where nodes are not labelled by events
anymore but by rules:

obsupybupxb

This graph can be considered as an abstract story. Similarly, s0 can be abstracted into:

obsu

py

px

b

As the latter is embedded in the former, we say that s0 is a strongly compressed form of both
s1 and s2. In section 2.5.3, we formalize this notion of an abstract story and introduce strong
compression, as implemented in the kappa simulator.

1 An embedding of a graph G = (V, E) in another graph G′ = (V ′, E′) is a injective graph-morphism ϕ : G → G′,
that is a map from V to V ′ such that x and ϕ(x) have the same label for all x and ∀x, y, (x, y) ∈ E =⇒
(ϕ(x), ϕ(y)) ∈ E′.

6

2.5.3. Abstract stories and compression

An abstraction over S(Ω, c) consists in:

• An abstract domain A. In the last example, it would be the set of all directed graphs whose
nodes are labelled by rules, which is roughly the choice made by the current version of the
kappa simulator.

• An abstraction map α : S(Ω, c)→ A. In the last example, α abstracts away the distinction
between the two kinases present in the mixture.

An abstraction (A,α) yields an equivalence relation ∼α such that s ∼α s′ if and only if α(s) =
α(s′). In the last example, s1 and s2 are equivalent in this sense. Moreover, a common pat-
tern is to take A as a set of labelled directed graphs. Then, it is possible to introduce a no-
tion of compression modulo α as a relation →α over stories such that s →α s′ if and only if
α(s′) is embedded into α(s). In this context, a story is said to be minimal if it can’t be com-
pressed into a shorter one. In the last example, we would have s1 →α s0 and s2 →α s0, s0 being
minimal.
The notion of strong compression as implemented in the kappa simulator corresponds to com-

pression modulo α where α abstracts away the identity of the agents targeted by an event. More
precisely, α maps a story to a graph with one node for each of its events whose edges correspond
to the precedence relation on them. However, the node associated to an event e is not labelled
with e itself, in which case we would get weak compression, but by the rule it instantiates.
Note that many other relevant notions of compression can be defined with this formalism. For

instance, any equivalence relation being given over the set E of possible events, we could label each
node of an abstract story with the equivalence class of the event it corresponds to. In particular,
we could define a notion of filtered compression where, compared to strong compression, only the
identity of the agents of some type would be abstracted away. Finally, it is possible to abstract
away the precedence order over the events of a story and to use another relation to define the
edges of its abstract counterpart. This will be very useful in Section 4 when generating stories
statically.

3. Rectangular systems

In this section, we study an important class of event systems we call rectangular . Most concepts
defined previously admit a nice algebraic characterization in this setting and efficient algorithms
can be provided that do not necessarily exist in general. An event system (Q,E,C) is said to be
rectangular if:

• A state is a valuation of a set of state variables. That is, there exists a set of variables X
and for each variable x ∈ X a set Vx of values it can take such that Q =

∏
x∈X Vx.

• All contexts of C along with the sets pre [(e) and eff [(e) for e ∈ E can be encoded as partial
valuations of X .

Before we provide a rigorous definition, we have to discuss this concept of a partial valuation.

7

3.1. Partial valuations

A partial valuation of X is a set of traits over X , a trait being an element of
⋃
x∈X {x} × Vx.

A partial valuation ϕ can be interpreted both as a set of equality tests, a trait (x, v) standing
for the constraint x = v, or as a set of assignments, (x, v) standing for x := v. In the first
case, it denotes the set of states [ϕ] = {q ∈ Q : ∀(x, v) ∈ val, qx = v}. We provide the following
operators for manipulating partial valuations:

• If ϕ is a partial valuation, we write ϕ its support, that is the set {x : (x, v) ∈ ϕ} of the
variables constrained in ϕ.

• A partial valuation is said to be contradictory if it contains two contradictory constraints,
that is both (x, v) and (x, v′) for v 6= v′.

• If ϕ1 ⊇ ϕ2, we say that ϕ1 implies ϕ2. Beware that ϕ1 ⊇ ϕ2 ⇐⇒ [ϕ1] ⊆ [ϕ2]

• ϕ1 ∪ ϕ2 is the concatenation of ϕ1 and ϕ2. Beware that [ϕ1 ∪ ϕ2] = [ϕ1] ∩ [ϕ2]

• ϕ1 and ϕ2 are said to be compatible if their concatenation is not contradictory. Then, we
write ϕ1 ↑ ϕ2.

• They are said to be incompatible otherwise, in which case we write ϕ1 ↓ ϕ2.

• If ψ is a set of variables, then ϕ \ψ is defined as {(x, v) ∈ ϕ : x 6∈ ψ}. In particular, ϕ1 \ϕ2

is the set of constraints in ϕ1 which involve variables that are unconstrained in ϕ2.

• Finally, we define the update of ϕ1 by ϕ2 as: ϕ1 ! ϕ2 = ϕ2 ∪ (ϕ1 \ ϕ2)

We write pval(X) the set of all non-contradictory partial valuations of X . We’re now able to
define rectangular systems rigorously.

3.2. Definition and properties of rectangular systems

An event system (Q,E,C) is said to be rectangular if there exists a set of variables X such that Q
is the set of valuations of X and C is the set of all [c] for c a non-contradictory partial valuation
of X . Moreover, for each event e ∈ E, there has to exist θ, µ ∈ pval(X) such that pre [(e) = [θ]
and post [[c](e) = [c ! µ] for all c ∈ pval(X). We write θ and µ pre(e) and eff(e) respectively.
Moreover, we write post(e) = pre(e) ! eff(e).
Using the formalism of partial valuations, we can state and prove an algebraic characterization

of concurrency.

Theorem 2. Let e1 and e2 two events in a rectangular system. Then, e1 and e2 are non-trivially
concurrent if and only if the following conditions hold:

a. pre (e1) ∩ eff (e2) = ∅ b. pre (e2) ∩ eff (e1) = ∅

c. pre (e1) ↑ pre (e2) d. eff (e1) ↑ eff (e2)

Moreover, they are trivially concurrent if and only if pre(e1) ↓ pre(e2), post(e1) ↓ pre(e2) and
post(e2) ↓ pre(e1).

8

A rectangular event system (Q,E,C) is said to be regular if eff(e) ⊆ pre(e) for any event e ∈ E.
In other words, every variable which is modified by an event has to be tested first. Kappa models
are not regular in general but it can be argued that biologically relevant ones are. One reason
for this is that the kinetics of a chemical reaction modifying a protein residue should depend on
the previous state of the latter. This is especially true in the particular case where the residue
is already in the state the rule would set it to. By the way, the kappa simulator emits a warning
when encountering a rule like A(x) → A(xp) although it’s perfectly valid kappa. A remarkable
property of regular systems is the following:

Theorem 3. In a regular system, the strong similarity relation ∼ is identical to the Mazurkieviecz
equivalence relation 'c in any context c.

3.3. The case of Kappa

In this section, we consider a kappa model and show how it is possible to build a rectangular
event system (Q,E,C) from it.

3.3.1. States

Before we define events, we have to decide upon a set of states of the world Q. It is natural to
think about Q as the set of all mixtures whose agents respect their type signature and are given
unique identifiers. However, in order to fit the formalism of rectangular systems, such mixtures
have to be encoded in a series of state variables.
We introduce a set I of agent identifiers. For practical reasons, we want to be able to extract

the type of an agent from its identifier through a map: τ : I → T where T stands for the set of
agent types. Therefore, a natural choice for I is T ×N but other encodings are possible. We call
port a tuple 〈u, x〉 where u is an agent identifier and x the name of a site which is present in the
signature of τ(u). Finally, the state of the agents of a mixture is described by the following set
of variables:

• For each agent identifier u, a variable u∃ is introduced which is true if u is in the mixture,
false if it was once but was deleted, and null otherwise. It is important to distinguish
between false and null so that an event can’t give an identifier that had been used in
the past to a newly created agent.

• For each port x, a variable xι is introduced, which describes its internal state. For instance,
it might be p for phosphorylated or u for unphosphorylated. It is null when the agent x
belongs to is not in the mixture.

• For each port x, a variable xλ is introduced which describes its linking state. The latter
can take three types of values: free if x is not bound, bound(y) where y is a port, or null
if the agent x belongs to is not in the mixture.

For J ⊆ I, we write XJ the set of all these variables for the agent identifiers of J . Then, we
define Q as the set of valuations over XI . Despite the fact that I and so XI are typically infinite,
any valuation describing a kappa mixture has only a finite number of non-null values.

9

K(d1), S(d1, xu) → K(d1), S(d1, xp)

d

K
d

x

S

↓

d

K
d

x

S

ag(px) = {k, s}

Precondition

k ∃ = true

s ∃ = true

〈k, d〉λ = bound〈s, d〉

〈s, d〉λ = bound〈k, d〉

〈s, x〉λ = free

〈s, x〉ι = u

Effect

〈s, x〉ι := p

Figure 2: Example of encoding of the rule px of Figure 1.

3.3.2. Rules and events

A rule r is given by a set of agent identifiers ag(r) ⊆ I and two partial valuations of Xag(r) which
are pre(r) and eff(r) . An example is given Figure 2. An event is defined as a tuple 〈r, ϕ〉 where r
is a rule and ϕ : ag r → I an instantiation map. Note that ϕ has to be injective and to preserve
the type of agents in the sense that ∀a ∈ ag(r), τ(ϕ(a)) = τ(a). If v is a partial valuation of
ag(r), we write ϕ(v) the partial valuation of I we get after renaming each agent identifier in it
with ϕ. Then, it is possible to define the effect and the precondition of an event as:

pre(〈r, ϕ〉) = ϕ(pre(r)) eff(〈r, ϕ〉) = ϕ(eff(r))

For convenience, we take the initial conditions of a model into account by introducing an init
rule which creates the initial mixture from scratch. Then, a trace or a configuration is said to
be valid if it is in the context {ε} with ε the empty mixture where all variables are set to null.
As a consequence, traces usually begin with an event instantiating init. Finally, a trait (x, v)
is said to be non-null if and only if v 6= null.
It is possible to generate stories from simulation traces. Indeed, for each instance of the

observable in the simulator output, we can turn the trace leading to it into a story by computing
its precedence relation thanks to Theorem 2 and then possibly use some compression algorithms.
We show how the problem of weak-compression can be reduced to minsat in section 3.4. Then,
in section 4, we introduce a completely different technique to generate stories statically, that is
without using any stochastic simulation.

3.4. The weak-compression algorithm

In this section, we introduce a weak-compression algorithm for regular models. For convenience
and efficiency, it is defined at the level of traces but we can show using the regularity hypothesis

10

that it gives the same result on two strongly similar traces in the sense it comes down to solving
the same minsat instance. Thus, it can be defined on a story from any of its trajectories.
Let t = e0, . . . , en a trace, e0 being an instance of the init rule and en its unique observable

event. We want to find a minimal valid subtrace of t which contains en. This problem is reducible
to the minsat problem of finding a valuation satisfying a boolean formula with a minimal number
of positive variables. Indeed, let’s consider the variables k0, . . . , kn, each ki being interpreted as
"we keep ei in the trace". For each boolean ki and each variable x such that (x, v) ∈ pre(ei) and
v 6= null, we introduce the clause Ci,x,v defined as follows:

ki =⇒
∨
j∈A

(kj ∧
∧
l∈Bj

¬kl)

where A = {j : j < i ∧ (x, v) ∈ eff(ej)} and Bj = {l : j < l < i ∧ (x, v′) ∈ eff(el), v′ 6= v} for
each j ∈ A. Each valuation of the {ki}i defines a subtrace of t. The latter is valid and contains
en if and only if (

∧
i,x,v Ci,x,v) ∧ kn is true. Therefore, compressing t comes down to finding a

valuation of this formula with a minimal number of positive variables, which is an instance of
minsat. Conversely, weak-compression is a np-hard problem. An example of weak-compression
is provided Appendix D.

4. Generating stories statically

We introduce in this section an algorithm to compute stories statically, that is without running
any simulation. Like most static analysis techniques, it abstracts away the kinetics properties
of a model and focuses on its mechanisms. As a consequence, many stories it produces are
very unlikely to appear in a simulation trace. This behaviour is interesting in some situations
where biocurators care about sleeping secondary pathways that become more active when a
perturbation is introduced in the model. Producing unlikely stories might help spotting such
perturbations. In other situations where only frequent stories are relevant, it is still possible to
run simulations in order to annotate statically generated stories with frequency informations.
Besides, abstracting away kinetics gives kappa much smoother semantics properties that make

reasoning over underspecified models easier. For instance, adding a rule to a model cannot discard
a story although it can critically decrease its frequency by introducing competition effects. More
generally, purely mechanistic properties are more robust regarding model composition. Therefore,
static analysis techniques are especially relevant in the context of assembling models from nuggets
of knowledge mined from litterature, which is a critical step towards making rule-based modelling
widely used.
Finally, the techniques we introduce in this section can be easily adapted to the problem

of finding stories respecting a user-defined property and they are best suited for interactive
reasoning, as there are many ways a human agent can assist the computer in its exploration of
the search space.

4.1. Problem statement

Most models admit an infinite set of stories. Although an algorithm might be able to generate a
finite representation of such a set, we see no structure in it that could enable such a representation

11

to exist and we’re not especially optimistic that there is one.
A natural way to circumvent this is to generate only the set of all minimal stories for some

compression relation. With weak-compression, the set of minimal stories may still be infinite
but it cannot in the case of strong-compression, as a consequence of Higman’s theorem on well-
quasi-orderings. Unfortunately, the problem of computing the set of all strongly compressed
stories of a model is undecidable. Indeed, it is more difficult than the reachability problem which
consists in deciding whether or not a given rule can belong to a valid trace. This last problem is
undecidable itself as a consequence of the Turing-completeness of kappa.
In the following presentation of our algorithm, we get rid of termination problems by limiting

the size of the generated stories.

4.2. Overview

Our algorithm doesn’t generate stories directly but rather generates some abstract stories we
call local stories. Then, it is easy to get concrete stories from them through a concretization
operator. This abstract domain of local stories is especially designed to make the search process
fast and non-redundant. Moreover, it admits a nice characterization of valid abstract stories,
that is abstract stories s such that α−1({s}) 6= ∅, and this enables us to cut early the search
branches that contain none of them.
Here, we introduce a generic branch and cut exploration algorithm we use to find valid abstract

stories. It is parameterized by some primitives whose implementation is given section 4.5. Let
A a set of abstract stories and A∗ ⊆ A the set of valid ones. The algorithm features a set of
disjoint sets S = {Si ⊆ A}i sorted in a priority queue such that the following invariant holds:

A∗ ⊆
⋃
i

Si ∪ F

where F ⊆ A∗ is the set of the valid abstract stories that have already been found. It starts with
S = {A} and F = ∅ and terminates eventually when S = ∅ in which case F = A∗. At each step
of the algorithm, an element of lowest cost is picked in S and removed from it, call it Si. This
element passes through a dual closure operator p with the following properties for X,Y ⊆ A:

p(X) ⊆ X p(X) ∩A∗ = X ∩A∗ (p ◦ p)(X) = p(X) X ⊆ Y ⇒ p(X) ⊆ p(Y)

Then, three situations can occur:

1. We have p(Si) = {a} with a ∈ A∗ in which case a is added to F .

2. We can prove p(Si) ∩ A∗ = ∅, in which case nothing is done.

3. Otherwise, S := S ∪ b (p (Si)), with b a branching function partitioning p(Si) into a set
of sets of strictly lower cardinal.

In the case A is finite, the algorithm is guaranteed to terminate. Indeed, let’s assume A is
of cardinal n. Then the vector (v1, . . . , vn) with vi = | {k : |Sk| = i} | decreases strictly for the
lexicographic order at each iteration.

12

4.3. Local stories

A local story is a tuple (N,A) where:

• N is a set of nodes, each node i being labelled by a rule ri.

• A is a set of arrows, each arrow connecting an assignment of a node to a test of another
one. More formally, an arrow a is defined by:

– Its source src(a) = 〈i, µ〉 with i a node and µ ∈ eff(ri).

– Its destination dst(a) = 〈j, θ〉 with j a node and θ ∈ pre(rj).

The source node i of a is written srcn(a) and its destination node j is written dstn(a).
Finally, we write srcv(a) the variable modified by µ and dstv(a) the one tested by θ.

Contrary to a story whose nodes are labelled by events, the nodes of a local story are labelled
by rules. However, for each test of each node, we keep track of the exact assignment that is
responsible for its success.

4.3.1. Local stories as abstract stories

It is possible to map a valid trace t = e0, . . . , en into the local story l(t) defined as follows:

• For each event ei = 〈ri, ϕi〉 in t, we introduce a node i labelled by ri.

• For each i < j and each (x, v) ∈ eff(ei)∩ pre(ej) such that x is not reassigned by any event
between ei and ej , we introduce an arrow from 〈i, ϕ−1

i (x, v)〉 to 〈j, ϕ−1
j (x, v)〉, where ϕ−1(t)

replaces any global agent identifier appearing in t by its local counterpart using ϕ−1.

In the case of regular models, t ∼ t′ ⇒ l(t) = l(t′). Therefore, it is possible to define an
abstraction (A,α) with A the abstract domain of local stories and, for all story s, α(s) = l(t)
with t any one of its trajectories. In the next section, we introduce a necessary and sufficient
condition for an abstract story a to be valid along with a characterization of α−1({a}).

4.3.2. A characterization of validity

A first necessary condition for an abstract story to be valid is that there is exactly one incoming
arrow towards each non-null test of each node. In this case, it is said to be complete. Moreover,
the arrows have to be well-typed in the sense that they have to connect compatible variables.
For instance, a binding assignment can’t be connected to a phosphorylation test. More formally,
for each arrow a with src(a) = 〈i, µ〉 and dst(a) = 〈j, θ〉, there has to exist two instantiation
maps ϕ1 and ϕ2 such that ϕ1(µ) = ϕ2(θ). This is true if and only if τ(µ) = τ(θ) where τ(t) is
defined as the type of a trait t by replacing each agent identifier i by τ(i) in t. Moreover, in the
specific case of kappa, we have to ensure that for each arrow that explains a test of the form
〈x〉λ = bound〈y〉, a symmetric arrow explains 〈y〉λ = bound〈x〉 too.
In an abstract story s, agents are local to each node. Therefore, in order to build traces from

s, it is necessary to map each local agent of each node into a global entity so each rule can be
instantiated into an event. Thus, suppose we have a map π : N × IL → IG with N the set of

13

nodes of s, IL its set of local agent identifiers and IG a set of global agent identifiers. Then,
let’s consider the set of events Eπ(s) = {〈ri, π(i, ·)〉 : i ∈ N}. Two necessary conditions on π for
Eπ(s) to be the set of events of a trace t such that (α ◦ C)(t) = s are the following:

1. Two different agents of a same node can’t be mapped into the same global entity:

∀i, x, y, π(〈i, x〉) = π(〈i, y〉) =⇒ x = y

2. For each arrow a, the local agent featured by the source of a and the one featured by its
destination have to be mapped to the same global entity:

π(〈srcn(a), (ag ◦ srcv)(a)〉) = π(〈dstn(a), (ag ◦ dstv)(a)〉)

where ag(v) maps a variable to the agent it describes for any variable v.

Now, suppose that these two conditions are met. By hypothesis, π(srcn(a), ·)(srcv(a)) and
π(dstn(a), ·)(dstv(a)) are equal for each arrow a and we write them varπ(a). We call varπ(a)
the global variable featured by a. Let � a total order on Eπ(s) and t the unique trace whose
events are in Eπ(s) and are ordered by �. Two necessary conditions on � so that (α ◦ C)(t) = s

are the following:

1. For each arrow a, srcn(a) ≺ dstn(a).

2. For each triple of distinct nodes (x, y, z) such that there exists an arrow a such that:

x = srcn(a) ∧ y = dstn(a) ∧ varπ(a) ∈ π(z, ·)(eff(rz))

we have z ≺ x ∨ z � y.

When these two conditions hold, we say that � is a valid π-scheduling of s. An example of an
abstract story which admits no valid π-scheduling is provided Figure 3. This leads us to our
main theorem.

Theorem 4. Let s an abstract story with well-typed arrows, N its set of nodes and IL its set
of local agent identifiers. Let ≡ the smallest equivalence relation on N × IL such that for every
arrow a of s:

〈srcn(a), (ag ◦ srcv)(a)〉 ≡ 〈dstn(a), (ag ◦ dstv)(a)〉

Let IG = (N × IL / ≡) and π the canonical projection from N × IL into IG. Then s is valid if
and only if:

1. s is complete

2. π maps different agents of a same node of s into different global entities

3. s admits a valid π-scheduling �

Moreover, if s is valid, then α−1({s}) contains only one story (modulo renaming of agents) that
is equal to C(t) for t any trace whose events are in Eπ(s) and are oredered by �.

Note that the last part of the theorem only holds for regular models, in which case it suggests
a straightforward concretization operator.

14

Let’s consider three rules px, py and obs and an abstract story s featuring a node for each
one of them – among other things that are not shown here:

px : A(xu, yp) → A(xp, yu)

py : A(xp, yu) → A(xu, yp)

obs : A(xp, yp) → A(xp, yp)
obs

px py

x y

x, y x, y

Let’s suppose that the phosphorylation of the site x of the unique agent featured by obs is
due to px and that the phosphorylation of the site y of the same agent is due to py, which
gives us two arrows. These arrows make all the three agents featured by each node equivalent
for ≡, and so they are all mapped into the same global instance by π, let’s write it a.
On the diagram above, we write x the global variable 〈a, x〉ι and y the global variable 〈a, y〉ι.
We write next to each node the set of global variables it modifies and each arrow a is labelled
by varπ(a). We show below that s does not admit a valid scheduling, which implies that s is
not valid.

obs

px py

x

x

There is an arrow from py to obs:

py ≺ obs

The node py modifies a variable that is featured
by an arrow going from px to py:

(py ≺ px) ∨ (py � obs)

Combining these two clauses:

py ≺ px

With a symmetric reasoning, we can show that:

px ≺ py

which is a contradiction. As a consequence, s
is not valid. obs

px py

y

y

Figure 3: An example of impossible scheduling

15

4.4. Partial abstract stories

In the high-level description of the search algorithm of section 4.2, we manipulated sets of abstract
stories. These sets are encoded by partial abstract stories.

4.4.1. Definition

Let s and s′ two abstract stories whose sets of nodes are N and N ′. An injective map f : N → N ′

is said to be an embedding of s into s′ if it preserves both the nodes labels and the arrows of s.
A rooted abstract story is a tuple (s, ω) where s is a connex abstract story and ω one of its

nodes, usually the observable. We say that (s, ω) is embedded into (s′, ω′) if there exists an
embedding f of s into s′ such that f(ω) = f(ω′). Note that as s and s′ are connex, such an
embedding is unique if it exists.
A partial abstract story is a triple (s, ω, c) such that (s, ω) is a rooted abstract story and c is

a set of alternatives. An alternative a is given by:

• A destination dst(a) = 〈i, θ〉 where i is a node of s and θ ∈ pre(rn), like in the definition of
the destination of an arrow.

• A set of possible sources src?(a), a possible source being a tuple 〈n̂, µ〉 where n̂ is either:
– an existing node of s labelled by a rule r
– the special value new (r) with r a rule

and µ ∈ eff(r).

Intuitively, an alternative describes a set of possible arrows with the same destination but different
sources. These possible sources can feature nodes that do not exist yet in s but whose associated
rule is known.
An alternative a is said to be empty if src?(a) = ∅ and it is said to be resolved if src?(a) is

a singleton. Finally, if p = (s, ω, c) is a partial abstract story, we write p = s its underlying
abstract story and alt(p) = c its set of alternatives.

4.4.2. The extension relation

We say that a rooted abstract story (s′, ω′) extends a partial abstract story (s, ω, c) when the
following conditions hold:

• There exists an embedding f from (s, ω) into (s′, ω′).

• For each a ∈ c with dst(a) = 〈m, θ〉, there exists 〈n̂, µ〉 ∈ src?(a) such that there is an arrow
in s′ whose destination is 〈f(m), θ〉 and whose source is:
– 〈n, µ〉 for n a node of s′ labelled with r which is not in f(N) if n̂ = new (r), with N

the set of nodes of s
– 〈f(n̂), µ〉 otherwise

This can be used to represent sets of rooted abstract stories with partial abstract stories.
Indeed, for sp a partial abstract story, we define [sp] as the set of complete rooted abstract
stories with well-typed arrows extending sp.

16

4.5. The search algorithm

Now that we have introduced the notion of a partial abstract story, we can complete our descrip-
tion of the search algorithm introduced in section 4.2. All abstract stories are implicitly rooted
in their unique observable node and we use partial abstract stories to represent sets of them. In
particular, the set S of section 4.2 is now regarded as a set of partial abstract stories.

4.5.1. Manipulating partial abstract stories

The following invariant is preserved during the search process:

Invariant 1. For all s ∈ S, each non-null test of each node of s is the destination of an arrow
or of an alternative (exclusively).

As we see later, it guarantees that only complete abstract stories are generated. Moreover, no
valid abstract story is forgotten as guaranteed by the invariant:

Invariant 2. A∗ ⊆
⋃
s∈S [s] ∪ F .

Suppose that we have a partial abstract story s with a resolved alternative, that is an alternative
a such that src?(a) is a singleton. Then, it is natural to remove this alternative and add the
unique arrow it suggests in s. This is indeed a part of what the propagation operator actually
does. In the case where src?(a) = {〈new(r), µ〉}, adding such an arrow requires adding a new
node n labelled by r. Then, a new alternative has to be added to s for each non-null test of r in
order to preserve Invariant 1. Moreover, this whole operation should leave [s] ∩ A∗ invariant so
that Invariant 2 is preserved. For this to hold, these alternatives have to be kind of exhaustive
but that’s not sufficient. Indeed, if 〈new(r), µ′〉 ∈ src?(a′) for another alternative a′, then 〈n, µ′〉
has to be added to src?(a′) too.
In order to make node creation easier to handle, we don’t encode alt(s) as a set of alternatives.

Instead, we define for each abstract story x a set A(x) such that:

∀s, [s] ∩A∗ 6= ∅ =⇒ alt(s) ⊆ A(s)

and we encode instead its complementary set of disqualified possibilities disq(s) such that alt(a)
is obtained from A(s) by:

• Removing in it all the alternatives a such that dst(a) is the destination of an arrow in s.

• For all remaining alternative a, removing in src?(a) the elements t such that (a, t) ∈ disq(s).

It remains to define A. For this, let’s consider an abstract story s. If n is a node of s and t a
trait, the kind of the tuple 〈n, t〉 is defined by κs(〈n, t〉) = 〈rn, t〉 with rn the rule labelling n in
s. For r a rule and θ ∈ pre(r), we define src-kinds (〈r, θ〉) as the set of all tuples 〈r′, µ〉 for r′ a
rule and µ ∈ eff(r′) such that τ(µ) = τ(θ). Then, for any valid abstract story s ∈ A∗ and a an
arrow of s, we have:

(κs ◦ src)(a) ∈ (src-kinds ◦κs ◦ dst)(a)

17

As a consequence, src-kinds(k) can be regarded as a superset of all the possible kinds of sources
for an arrow whose destination has kind k in a valid abstract story. Then, for s an abstract story
and N its set of nodes, A(s) is defined as the set of alternatives a with dst(a) = 〈j, θ〉 and:

src?(a) = { 〈new(r), µ〉 : 〈r, µ〉 ∈ (src-kinds ◦ dst)(a) }

∪ { 〈i, µ〉 : i ∈ N, 〈ri, µ〉 ∈ (src-kinds ◦ dst)(a) }

for j ∈ N and θ ∈ pre(rj).

4.5.2. Initialization of the algorithm

The algorithm is initialized with S = {s0} where s0 is a partial abstract story with one node
labelled by obs and no arrow and such that disq(s0) = ∅. Indeed, A∗ ⊆ [s0] and Invariant 1 is
respected by definition of disq.

4.5.3. Consistency checks

The search algorithm has to estimate at each iteration whether or not a partial story s is incon-
sistent, that is [s] ∩ A∗ = ∅. Of course, such a test is undecidable in general as the reachability
problem can be reduced to it. Hopefully, a wide range of inconsistent partial stories can be
recognized using Theorem 4. Indeed, if s is a partial abstract story such that either condition 2
or 3 of Theorem 4 does not hold for s, then it is inconsistent.
In order to check whether or not we are in this case, we first compute the equivalence relation
≡ for s with a union-find datastructure, whose find operation corresponds to the π map. Then,
it is possible to check in quasi-linear time that no two agents of a same node are equivalent for
≡. After this, we check that s admits a valid scheduling for π, which is a problem of satisfiability
modulo the theory of partial orders. More specifically, there is one variable for each node of s
and clauses are of the form a ≺ b or (x ≺ a) ∨ (x � b). The number of clauses is cubic in the
number of nodes of s in the worse case, but it is closer to be linear in pratice. Moreover, although
the satisfiability test is exponential in the worse case, it is often linear as the high proportion of
clauses with only one litteral makes constraint propagation very efficient. Finally, when a size
limit for generated stories is given, partial abstract stories whose number of nodes exceeds this
limit are considered inconsistent. Moreover, we may want that the number of nodes labelled by
init does not exceed one.

4.5.4. Validity checks

An other test the search algorithm has to perform is whether or not [s] = {a} , a ∈ A∗ for s a
partial abstract story. This one is especially easy as it holds if and only if s passes the consistency
check described above and has an empty set of alternatives. Indeed, if s has an empty set of
alternative, it is complete thanks to Invariant 1. We conclude using Theorem 4.

4.5.5. The p propagation operator

Let s a partial abstract story, a ∈ alt(s) and t ∈ src?(a). We write choose (a,t)(s) the partial
abstract story built from s by adding the arrow whose source is given by t and whose destination

18

is given by dst(a) to it, creating a new node if needed. Moreover, each time an arrow explaining
a test of the form 〈x〉λ = bound〈y〉 is added, the appropriate symmetric arrow explaining 〈y〉λ =
bound〈x〉 has to be added too. The value of disq does not need to be updated in choose (a,t)(s),
which is one reason this encoding of the set of alternatives is relevant.

The p operator takes a partial abstract story s and does two things to it:

1. For every alternative a of s, if a is empty, we mark s as inconsistent so it is further
eliminated. If a is resolved, that is src?(a) is a singleton {t}, then s is updated into
choose (a,t)(s).

2. For each alternative a of s and t ∈ src?(a), if choose (a,t)(s) is provably inconsistent, then
we add (a, t) to disq(s). Here, we don’t use the expensive consistency check introduced in
section 4.5.3 but a constant-time version of it where scheduling constraints are generated
only for the neighborhood of the new arrow.

These two operations are repeated until they leave s unchanged.

4.5.6. The b branching operator

Let s a partial abstract story, a ∈ alt(s) and t ∈ src?(a) two well-chosen values. Then, b(s) =
{s1, s2} where s1 = choose (a,t)(s) and s2 is built from s by adding (a, t) to disq(s). Indeed,
{[s1], [s2]} is a partition of [s]. The choice of (a, t) is governed by a heuristic we discuss in
section 4.5.7.

4.5.7. Cost of a partial story

On many real world models, the search space becomes so large that this algorithm is unlikely to
generate the whole set of valid stories in a reasonable amount of time. However, when guided in
its exploration by a good heuristic function, it may find the most interesting ones very quickly.
Heuristics play an important role in two parts of the algorithm: when picking an element of S

and when branching. Indeed, each story of S is associated a cost and an element of lowest cost
is picked at each iteration. Moreover, branching is usually done in a way that minimizes the cost
of the first branch s1. Many strategies are possible to assign costs to partial abstract stories but
here are some basic principles:

• Penalizing node creation is usually a good greedy strategy to generate minimal stories first.

• Two arrows a and a′ such that varπ(a) = varπ(a′) should share the same source as often as
possible and partial abstract stories that are parcimonious in this sense should be assigned
lower costs.

• If the user is confident about the branching strategy and he wants to get to the first story
very quickly, a depth-first search is a good bet.

• Partial abstract stories that are similar to stories that have already been found can be
penalized so that the first stories to be generated are more representative of the whole set
of them.

19

4.6. Experimental results and prospects

A generic OCaml implementation of this algorithm is available at:

https://github.com/jonathan-laurent/kappa-stories

It was tested on the Kasim test suite provided at:

https://github.com/Kappa-Dev/KaSim/tree/master/models/test_suite/cflows

and asked to generate a single compressed story for each test case: each run took less than
one second on average. However, in the current stage of its development, it is not well-suited
for generating exhaustive sets of strongly compressed stories, even for small models and with a
bound on the size of relevant stories.
Indeed, although the number of strongly compressed stories might be reasonably small for

most models of interest, generating all of them would require to cut very early huge parts of
the search space containing only uncompressed stories. No solution to this problem is currently
implemented but we expect some progresses in a near future. Indeed, we are working on defining
a notion of compressible pattern on partial abstract stories such that the following property holds:

Proposition. If s is a partial abstract story such that choose (a,t)(s) features a compressible
pattern for any choice of (a, t), then α−1([s]) does not contain any compressed stories.

Finally, the heuristic which is currently implemented is very naive – a depth-first search strat-
egy penalizing the creation of nodes – but we’re confident that some minor improvements in it
will make our implementation scalable to much larger models.

5. Conclusion and future work

In this report, we introduced stories as formal counterparts to biological pathways and provided
some generic techniques to generate them from rule-based models of protein-protein interaction
networks. A lot of work remains to be done on causal analysis, in addition to what was mentioned
in section 4.6. For instance, it would be interesting to break stories into logical blocks that
would be larger than atomic events. Such blocks may consist in recurrent biological patterns
corresponding to specific computational or assembling primitives. They could be defined a priori
from well-known motifs or generated a posteriori by learning algorithms. Moreover, although
stories may be considered useful per se for the intuitive insight they provide into the structure
of a model when displayed as graphs, more subtle analysis techniques may be developped to
extract useful informations from them. In particular, we could use causal analysis to highlight
the behavioural differences between two variations of a same model.

20

https://github.com/jonathan-laurent/kappa-stories
https://github.com/Kappa-Dev/KaSim/tree/master/models/test_suite/cflows

References

[1] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based modelling of cel-
lular signalling, invited paper. In L. Caires and V.T. Vasconcelos, editors, Proceedings of
the Eighteenth International Conference on Concurrency Theory, CONCUR ’2007, Lisbon,
Portugal, volume 4703 of Lecture Notes in Computer Science, pages 17–41, Lisbon, Portugal,
3–8 September 2007. Springer, Berlin, Germany.

[2] V. Danos, J. Feret, W. Fontana, and J. Krivine. Scalable simulation of cellular signaling
networks, invited paper. In Z. Shao, editor, Proceedings of the Fifth Asian Symposium on
Programming Systems, APLAS ’2007, Singapore, volume 4807 of Lecture Notes in Computer
Science, pages 139–157, Singapore, 29 November – 1 December 2007. Springer, Berlin, Ger-
many.

[3] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, Jonathan Hayman, Jean
Krivine, Christopher D. Thompson-Walsh, and Glynn Winskel. Graphs, rewriting and path-
way reconstruction for rule-based models. In Deepak D’Souza, Telikepalli Kavitha, and
Jaikumar Radhakrishnan, editors, IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2012, volume 18 of LIPIcs, pages
276–288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

[4] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, and Jean Krivine. Rule-
based modelling, symmetries, refinements. In Jasmin Fisher, editor, Proceedings of the First
International Workshop, Formal Methods in Systems Biology, FMSB ’2008, volume 5054 of
Lecture Notes in BioInformatics, pages 103–122, Cambridge, UK, 4–5 June 2008. Springer,
Berlin, Germany.

[5] John L. Mackie. The Cement of the Universe: A study in Causation. 1988.

21

Appendices

A. A kappa model of SoS recruitment

Agent signatures
%agent: EGF(r)
%agent: EGFR(CR,C,N,L,Y1016~u~p,Y1092~u~p,Y1172~u~p)
%agent: SoS(PR,S~u~p)
%agent: Shc(Y~u~p,PTB~u~p)
%agent: Grb2(SH3c,SH3n,SH2~u~p)

Constants
%var: ’Avogadro’ 6.0221413E+23
%var: ’V’ 4.2E-14
%var: ’k_on’ 2.5E08 / (’Avogadro’ * ’V’) # molecule^-1 s^-1
%var: ’k_off’ 2.5 # s^-1
%var: ’k_cat’ 1 # s^-1

Initial mixture
%init: 5000 EGF(r)
%init: 5000 EGFR(CR,C,N,L,Y1016~u,Y1092~u,Y1172~u)
%init: 10000 SoS(PR,S~u)
%init: 10000 Shc(Y~u,PTB~u)
%init: 5000 Grb2(SH3c,SH3n,SH2~u)

Rules
’EGFR.EGFR’ EGF(r!2), EGFR(L!2,CR,N,C), EGF(r!3), EGFR(L!3,CR,N,C) <->

EGF(r!2), EGFR(L!2,CR!1,N,C), EGF(r!3), EGFR(L!3,CR!1,N,C) @ ’k_on’/2, ’k_off’/2
’EGF.EGFR’ EGF(r), EGFR(L,CR) <-> EGF(r!1), EGFR(L!1,CR) @ ’k_on’, ’k_off’
’Shc.Grb2’ Shc(Y~p), Grb2(SH2) -> Shc(Y~p!1), Grb2(SH2!1) @ 5*’k_on’
’Shc/Grb2’ Shc(Y~p!1), Grb2(SH2!1) -> Shc(Y~p), Grb2(SH2) @ ’k_off’
’EGFR.Grb2’ EGFR(Y1092~p), Grb2(SH2) <-> EGFR(Y1092~p!1), Grb2(SH2!1) @ ’k_on’, ’k_off’
’EGFR.Shc’ EGFR(Y1172~p), Shc(PTB) -> EGFR(Y1172~p!1), Shc(PTB!1) @ ’k_on’
’EGFR/Shc’ EGFR(Y1172~p!1), Shc(PTB!1) -> EGFR(Y1172~p), Shc(PTB) @ ’k_off’
’Grb2.SoS’ Grb2(SH3n), SoS(PR,S~u) -> Grb2(SH3n!1), SoS(PR!1,S~u) @ ’k_on’
’Grb2/SoS’ Grb2(SH3n!1), SoS(PR!1) -> Grb2(SH3n), SoS(PR) @ ’k_off’
’EGFR.int’ EGFR(CR!1,N,C), EGFR(CR!1,N,C) -> EGFR(CR!1,N!2,C), EGFR(CR!1,N,C!2) @ ’k_on’
’EGFR/int’ EGFR(CR!1,N!2,C), EGFR(CR!1,N,C!2) -> EGFR(CR!1,N,C), EGFR(CR!1,N,C) @ ’k_off’
’pY1092@EGFR’ EGFR(N!1), EGFR(C!1,Y1092~u) -> EGFR(N!1), EGFR(C!1,Y1092~p) @ ’k_cat’
’pY1172@EGFR’ EGFR(N!1), EGFR(C!1,Y1172~u) -> EGFR(N!1), EGFR(C!1,Y1172~p) @ ’k_cat’
’uY1092@EGFR’ EGFR(Y1092~p) -> EGFR(Y1092~u) @ ’k_cat’
’uY1172@EGFR’ EGFR(Y1172~p) -> EGFR(Y1172~u) @ ’k_cat’
’pY@Shc’ EGFR(Y1172~p!1), Shc(PTB!1,Y~u) -> EGFR(Y1172~p!1), Shc(PTB!1,Y~p) @ ’k_cat’
’uY@Shc’ Shc(Y~p) -> Shc(Y~u) @ ’k_cat’

The pattern we’re interested in
%obs: ’SoS.Grb2.Shc’ Grb2(SH2!1,SH3n!2),SoS(PR!2),Shc(Y~p!1)

22

B. A possible scenario for SoS recruitment

Intro EGFR

EGFR.int

Intro EGF

EGFR.EGFR

EGF.EGFREGF.EGFR

Intro EGF

Intro SoS

SoS.Grb2.Shc

Intro Shc

Intro Grb2

Shc.Grb2Grb2.SoS

Intro EGFR

pY@Shc

pY1172@EGFR

EGFR.Shc

23

C. Demonstrations of all theorems

Theorem 1

Proof. It is easy to check that two traces differing only in the permutation of two concurrent
consecutive events have the same precedence relation. By induction and using this fact, we can
prove the first direction.
Conversely, let t a trace, �t its precedence relation and σ a reordering preserving it. We will

prove that σ(t) ∼ t by induction on the size of t. For this, we show that eσ(1) is concurrent with
all the events of t from e1 to eσ(1)−1. Indeed, let’s suppose ¬

(
ei � eσ(1)

)
for 1 ≤ i < σ(1). Then :

ei �t eσ(1) (by definition of the precedence relation)

∴ eσ(σ−1(i)) �t eσ(1) (because σ(σ−1(i)) = i)

∴ σ−1(i) ≤ 1 (because σ preserves �t)

Therefore, σ−1(i) ≤ 1 and then i = σ(1), which is a contradiction. As a consequence, it is
possible to set eσ(1) in first position in t by making it commute with all the events from e1 to
eσ(1)−1. The trace obtained – call it t′ – is strongly similar to t. We conclude by applying the
induction hypothesis on t and t′ without their first element.

Theorem 2

The proof relies on the convention that, for any event e, pre (e) ∩ eff (e) = ∅. This means that if
an event has the test x = v in its precondition, the assignment x := v can’t belong to eff(e). It
is quite natural as such an assignment, if present, would be useless. The two parts of Theorem 2
are proved separately. Moreover, contexts are identified with their underlying partial valuation
here.

Characterization of non-trivial concurrency:

Proof. Let’s suppose the conditions a. to d. hold and take a context c.

• Let’s prove that: (c ` e1 ∧ c ` e2)⇒ (c ` e1, e2 ∧ c ` e2, e1 ∧ effc(e1) = effc(e2)).
Suppose that c ` e1 and c ` e2. In particular, we have c ` e2 and then c ⊇ pre(e2).
Combining this with b. it yields c ! eff(e1) ⊇ pre(e2) which implies c ` e1, e2. We can
show c ` e2, e1 the same way using a. Finally, the fact that effc(e1) = effc(e2) is a direct
consequence of d.

• Then, let’s prove that: (c ` e1, e2)⇒ (c ` e1 ∧ c ` e2).
Suppose c ` e1, e2. Then, c ` e1 holds obviously. Moreover, as c ! eff(e1) ⊇ pre(e2), using
b, we get c ⊇ pre(e2) and so c ` e2.

• Symmetrically, we can show that (c ` e2, e1)⇒ (c ` e1 ∧ c ` e2).

Therefore, e1 and e2 are concurrent. They are non-trivially concurrent in the context pre(e1) ∪
pre(e2), which is coherent thanks to c.

Conversely, let’s suppose that e1 and e2 are non-trivially concurrent. Then:

24

• Property c. is true thanks to the non-triviality hypothesis.

• Property d. is true because in a context c where c ` e1 and c ` e2, whose existence is
guaranteed by the previous point, effc(e1) = effc(e2).

• Property a. is true. Indeed, Let’s suppose pre (e1) ∩ eff (e2) 6= ∅. Then, there are two
possible cases:

– (x, v) ∈ pre (e1) and (x, v) ∈ eff (e2). In this case, let’s take a context c such that
c ` e2, e1. Such a context exists thanks to the non-triviality hypothesis. Then, let’s
consider c′ = c \ {x} ∪ {(x, v′)} where v′ = v̂ if (x, v̂) ∈ pre(e2) or any value different
from v otherwise. Then, c′ ` e2, e1 but c′ 6` e1, which is a contradiction. Here, we use
the facts that (x, v) 6∈ pre(e2) as pre(e2) ∩ eff(e2) = ∅ and that each variable can take
at least two different values, so we can choose v′ 6= v.

– (x, v) ∈ pre (e1) and (x, v′) ∈ eff (e2). This contradicts the non-triviality hypothesis
which assures the existence of a context c such that c ` e2, e1.

This terminates the proof.

Characterization of trivial concurrency:

Proof. The most difficult thing to prove here is that ∃c, c ` e1, e2 ⇐⇒ post(e1) ↑ pre(e2).
Suppose post(e1) ↑ pre(e2). Then:

(eff(e1) ∪ pre(e1) \ eff(e1)) ↑ pre(e2)

∴ (pre(e1) \ eff(e1)) ↑ pre(e2)

∴ pre(e1) ↑ (pre(e2) \ eff(e1))

thus the context c = pre(e1) ∪ (pre(e2) \ eff(e1)) is coherent. In this context, c ` e1, e2. The
converse is easy.

Theorem 3
See the paragraph before the proof of Theorem 2.

Proof. All comes down to the fact that for all context c, if e1 and e2 are non-trivially concurrent
in context c, then they are non-trivially concurrent. Indeed, let c such a context.

• pre (e1) ↑ pre (e2) as c ` e1 and c ` e2

• eff (e1) ↑ eff (e2) as effc(e1, e2) = effc(e2, e1)

• pre (e1) ∩ eff (e2) = ∅. Indeed, if this is wrong, two cases are possible:

– (x, v) ∈ pre (e1) and (x, v) ∈ eff (e2). As we are working in a regular system, x ∈
pre(e2). Moreover, (x, v) 6∈ pre(e2) by the convention introduced before the proof of
Theorem 2. Therefore, (x, v′) ∈ pre (e2) for v 6= v′, which contradicts the fact that
c ` e1 ∧ c ` e2.

25

– (x, v) ∈ pre (e1) and (x, v′) ∈ eff (e2) for v 6= v′. This contradicts the fact that
c ` e2, e1.

• pre (e1) ∩ eff (e2) = ∅ can be shown symmetrically.

Theorem 4

Proof. We have already proved that conditions 1 to 3 are necessary for s to be valid. It remains
to be proven that if they hold then C(t) ∈ α−1({s}) for any trace t whose events are in Eπ(s)
and are ordered by � and that all elements of α−1({s}) are equivalent modulo the renaming of
their agents.
Suppose conditions 1 to 3 hold and let t a trace whose events are in Eπ(s) and are ordered by
�. The elements of Eπ(s) are well-defined thanks to condition 2 which guarantees the injectivity
of each instantiation map π(i, ·). Moreover, t is valid. Indeed, for each non-null test (x, v) of
each event e of t, an other event e′ sets x to the right value by condition 1. By condition 2, e′

occurs before e and x is not modified between e′ and e. Therefore, C(t) is a story and it is easy
to show that it is abstracted into s.
Let t and t′ two traces such that both (α◦C)(t) and (α◦C)(t′) belong to α−1({s}). We rename

their agents so they have identifiers in (N × IL / ≡) as demonstrated in 4.3.2. Then, we show
that t ∼ t′ using Theorem 1 by proving that for all pair of events (e, e′) such that e comes before
e′ in t and ¬(e� e′), e comes before e′ in t′. Indeed, let e and e′ two events of t such that e comes
before e′ in t and ¬(e � e′). We prove that e comes before e′ in t′ by induction on the distance
between e and e′ in t. By Theorem 2, we are in one of the following situations:

1. There exists x ∈ eff(e) ∩ pre(e′). If an event em modifies x between e and e′ in t, we
conclude using the induction hypothesis on (e, em) and (em, e′). Otherwise, there is an
arrow between the nodes corresponding to e and e′ in s and then e comes before e′ in t′ by
condition 3.

2. There exists x ∈ pre(e) ∩ eff(e′). Similarly, we can suppose that x is not modified by any
event between e and e′. Let ec the last event modifying x before e. Then e′ comes before
ec or after e in t′ by condition 3. Moreover, by regularity, e′ is testing x ans there is an
arrow in s between ec and e′. Therefore, e′ has to come after ec in t′ and we can conclude.

3. We have pre (e) ↓ pre (e′), in which case any variable x tested by e and e′ with different
values is modified by an event em between e and e′ and we can use the induction hypothesis
on (e, em) and (em, e′).

4. We have eff (e) ↓ eff (e′) and case 1 applies by regularity.

Thus, t and t′ are strongly similar and then C(t) = C(t′). This terminates the proof.

26

D. An example of weak compression

Let’s consider a model made of a single agent S with two phosphorylation sites x and y and
three rules acting on it. It is possible to represent the four possible states of the system along
with the transition corresponding to each rule on a square diagram:

px : S(xu) → S(xp)

py : S(xu, yu) → S(xu, yp)

uy : S(xp, yp) → S(xp, yu)

〈u, p〉
px
- 〈p, p〉

〈u, u〉

py

6
................

px
- 〈p, u〉

uy

?

................

Suppose the initial state is S(xu, yu) and the observable state is S(xp, yu). A trace leading to
the observable is given by the dotted path (init, py, px, uy, obs). It can be compressed into
the solid path (init, px, obs).

〈s, x〉ι 〈s, y〉ι

? ! ? !

0 init × u × u

1 py u u p

2 px u p

3 uy p p u

4 obs p u

C4,x,p : (x4 ⇒ x2)

C3,x,p : (x3 ⇒ x2)

C2,x,u : (x2 ⇒ x0)

C1,x,u : (x1 ⇒ x0)

C4,y,u : x4 ⇒ (x3 ∨ ¬x1 ∧ x0)

C3,y,p : (x3 ⇒ x1)

C1,y,u : (x1 ⇒ x0)

In the table above, each column corresponds to a variable (s∃ is omitted) and is split into two
parts: on the left are its tested values and on the right are its assigned values. The character
× corresponds to the null value. Next to this table are the clauses corresponding to the two
variables 〈s, x〉ι and 〈s, y〉ι, abbreviated in x and y.

27

	Introduction
	The kappa modelling language
	From rules to pathways

	A generic framework for event systems
	Event systems
	Traces
	Concurrent events and equivalent traces
	Configurations
	Stories
	Sub-stories and compression
	The example of double phosphorylation
	Abstract stories and compression

	Rectangular systems
	Partial valuations
	Definition and properties of rectangular systems
	The case of Kappa
	States
	Rules and events

	The weak-compression algorithm

	Generating stories statically
	Problem statement
	Overview
	Local stories
	Local stories as abstract stories
	A characterization of validity

	Partial abstract stories
	Definition
	The extension relation

	The search algorithm
	Manipulating partial abstract stories
	Initialization of the algorithm
	Consistency checks
	Validity checks
	The p propagation operator
	The b branching operator
	Cost of a partial story

	Experimental results and prospects

	Conclusion and future work
	A kappa model of SoS recruitment
	A possible scenario for SoS recruitment
	Demonstrations of all theorems
	An example of weak compression

