Note on discrete Linkwitz extension clipping
constraints
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Consider the Linkwitz extension filter extending the response from wg, Qo
to wr, Qu: 2 | wo 2
§° 4+ s+ w,
H(s) = %

s4 + oS + wi

For hardware complexity reasons, it is tempting to implement it in software.
This transfer function is a particularly good candidate because its caracteris-
tic frequencies are typically a few hundred hertz, much below audio sampling
frequencies.

By applying the bilinear transform (without prewarping) and multiplying
both numerator and denominator by (1 + 2)2, the equivalent digital filter has
response

H(z) = (K? + Kwo/Qo +w§)22 + (20.)8 —2K?)z + (K? — Kwo/Qo +w§)
K2+ Kuwy/Qo +w})22 + (2w2 — 2K2)z + (K2 — Kwo/Qo + wi)

with K = 2f,. Introducing the caracteristic discrete pulsations 791 = wo1/K,
we get

(1+m0/Qo +13)2" +2(n0 — Dz + (1 — n0/Qo + 1)
(L+m/Q1+n7)z% +2(m — Dz + (1 —m/Q1 +n7)

Let us call h(n) the impulse response of that filter. If the input sequence is
x € £°°(7Z), then the output y at say t = 0 satisfies

H(z)=

lyl = w_yh(k)
k=0

<D llzlsol (k)]
k=0
< [lzllcollPll2

where ||h]l; may a priori be infinite. This is tight, for instance with x_; =
sign(h(k)) for all k& € Z. Assuming ||h;]| < oo, this means that the filter, seen
as an operator over £°°(Z), has norm ||h||;.



In the context of audio processing, this means we need to normalize the filter
by the 1-norm of its impulse response to make sure we do not introduce clipping.

We're brought to computing this 1-norm. Fortunately, we know that the
(causal) impulse response is given by

1 [~ o
h(n):%/ H(e)e1 dg

The discriminant of H(z)’s denominator can be computed to be

n (2= (24 gz ) m = 5o ) =4 (meeat - 2 170 - 5 )

For typical applications, n; = il < 1. This guarantees that the discriminant

is negative, so I'll focus on that case from now on.
By partial fraction decomposition, we can write

H(z)G<1+ 4 5 A>

Z—« z—Q

where «, @ are the complex roots of the denominator, and A can be evaluated
as a residue; the residues over the two poles are conjugates because H(z) is a
ratio of real polynomials. The norm of « is

|a|2: 1—771/Q1 +TI%
L+m/Q1+ 17

Then, we have h(0) =1 and for n > 0:
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Looking at one half of the integrand, we write

Aeitn Aeje(nfl)

el —a  1—aei?

Since |a| < 1, we may develop this fraction as a power series, with absolute
convergence. It’s easy to check we can swap summation and integral, ultimately
yielding
1 [T Aelfm
2 J_ ei? —a

df = Aa""1t.

Doing the same computation with the other half, we get in total
|h(n)] = |G| |2§R (Aa”_1)|

Therefore,

[h]ly = 1G] (1 +> 29?@@"))

n=0



In general, this does not have a closed-form expression. However, we are mostly
interested in bounding ||k || from above. Call Sy the expression above, where we
cut the sum at n = N. For terms with n > N, bounding by |R(Aa™)| < |A]|a|™,
we get that

s |2Aa N+ |
< < 2|A| - = R
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We can now extract a procedure to compute ||h||; to any given precision: we
iterate, keeping Sy and w = 240V in memory. At each step, compute the real
part of w and accumulate into Sy . Stop when |Sy| is large enough compared to
|w|/(1—|e|). This happens in a reasonable number of steps, since |w| decreases
exponentially.



