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Consider the Linkwitz extension filter extending the response from ω0, Q0

to ω1, Q1:

H(s) =
s2 + ω0

Q0
s+ ω2

0

s2 + ω1

Q1
s+ ω2

1

For hardware complexity reasons, it is tempting to implement it in software.
This transfer function is a particularly good candidate because its caracteris-
tic frequencies are typically a few hundred hertz, much below audio sampling
frequencies.

By applying the bilinear transform (without prewarping) and multiplying
both numerator and denominator by (1 + z)2, the equivalent digital filter has
response

H(z) =
(K2 +Kω0/Q0 + ω2

0)z
2 + (2ω2

0 − 2K2)z + (K2 −Kω0/Q0 + ω2
0)

K2 +Kω0/Q0 + ω2
0)z

2 + (2ω2
0 − 2K2)z + (K2 −Kω0/Q0 + ω2

0)

with K = 2fs. Introducing the caracteristic discrete pulsations η0,1 = ω0,1/K,
we get

H(z) =
(1 + η0/Q0 + η20)z

2 + 2(η0 − 1)z + (1− η0/Q0 + η20)

(1 + η1/Q1 + η21)z
2 + 2(η1 − 1)z + (1− η1/Q1 + η21)

Let us call h(n) the impulse response of that filter. If the input sequence is
x ∈ ℓ∞(Z), then the output y at say t = 0 satisfies

|y| =
∞∑
k=0

x−kh(k)

≤
∞∑
k=0

∥x∥∞|h(k)|

≤ ∥x∥∞∥h∥1

where ∥h∥1 may a priori be infinite. This is tight, for instance with x−k =
sign(h(k)) for all k ∈ Z. Assuming ∥h1∥ < ∞, this means that the filter, seen
as an operator over ℓ∞(Z), has norm ∥h∥1.
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In the context of audio processing, this means we need to normalize the filter
by the 1-norm of its impulse response to make sure we do not introduce clipping.

We’re brought to computing this 1-norm. Fortunately, we know that the
(causal) impulse response is given by

h(n) =
1

2π

∫ π

−π

H(ejθ)ejθndθ

The discriminant of H(z)’s denominator can be computed to be

4η1

(
2η31 −

(
2 +

1

Q2
1

)
η1 −

2

Q1

)
= 4η1

(
η1(2η

2
1 − (2 + 1/Q2

1))−
2

Q1

)
For typical applications, η1 = π f1

fs
< 1. This guarantees that the discriminant

is negative, so I’ll focus on that case from now on.
By partial fraction decomposition, we can write

H(z) = G

(
1 +

A

z − α
+

A

z − α

)
where α, α are the complex roots of the denominator, and A can be evaluated
as a residue; the residues over the two poles are conjugates because H(z) is a
ratio of real polynomials. The norm of α is

|α|2 =
1− η1/Q1 + η21
1 + η1/Q1 + η21

< 1

Then, we have h(0) = 1 and for n > 0:

|h(n)| =
∣∣∣∣ 12π

∫ π

−π

(
A

ejθ − α
+

A

ejθ − α

)
ejθndθ

∣∣∣∣
Looking at one half of the integrand, we write

Aejθn

ejθ − α
=

Aejθ(n−1)

1− αe−jθ

Since |α| < 1, we may develop this fraction as a power series, with absolute
convergence. It’s easy to check we can swap summation and integral, ultimately
yielding

1

2π

∫ π

−π

Aejθn

ejθ − α
dθ = Aαn−1.

Doing the same computation with the other half, we get in total

|h(n)| = |G|
∣∣2ℜ (Aαn−1

)∣∣
Therefore,

∥h∥1 = |G|

(
1 +

∞∑
n=0

|2ℜ(Aαn)|

)
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In general, this does not have a closed-form expression. However, we are mostly
interested in bounding ∥h1∥ from above. Call SN the expression above, where we
cut the sum at n = N . For terms with n > N , bounding by |ℜ(Aαn)| ≤ |A||α|n,
we get that

SN ≤ ∥h∥1/|G| ≤ SN + 2|A| ·
∞∑

n=N+1

|α|n = SN +
|2AαN+1|
1− |α|

We can now extract a procedure to compute ∥h∥1 to any given precision: we
iterate, keeping SN and w = 2AαN in memory. At each step, compute the real
part of w and accumulate into SN . Stop when |SN | is large enough compared to
|w|/(1−|α|). This happens in a reasonable number of steps, since |w| decreases
exponentially.
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